To enhance the generalization performance of radial basis function (RBF) neural networks, an RBF neural network based on a q-Gaussian function is proposed. A q-Gaussian function is chosen as the radial basis functio...To enhance the generalization performance of radial basis function (RBF) neural networks, an RBF neural network based on a q-Gaussian function is proposed. A q-Gaussian function is chosen as the radial basis function of the RBF neural network, and a particle swarm optimization algorithm is employed to select the parameters of the network. The non-extensive entropic index q is encoded in the particle and adjusted adaptively in the evolutionary process of population. Simulation results of the function approximation indicate that an RBF neural network based on q-Gaussian function achieves the best generalization performance.展开更多
文摘To enhance the generalization performance of radial basis function (RBF) neural networks, an RBF neural network based on a q-Gaussian function is proposed. A q-Gaussian function is chosen as the radial basis function of the RBF neural network, and a particle swarm optimization algorithm is employed to select the parameters of the network. The non-extensive entropic index q is encoded in the particle and adjusted adaptively in the evolutionary process of population. Simulation results of the function approximation indicate that an RBF neural network based on q-Gaussian function achieves the best generalization performance.