为降低DBSCAN算法的运行时间,结合MCMC(Markov chain Monte Carlo,马尔可夫链蒙特卡洛)采样方法对DBSCAN进行改进,提出一种聚类算法,称为DBSCAN++。其基本思想是优先扩展拓展能力较强的核心对象。通过实验将DBSCAN++与DBSCAN和OPTICS进...为降低DBSCAN算法的运行时间,结合MCMC(Markov chain Monte Carlo,马尔可夫链蒙特卡洛)采样方法对DBSCAN进行改进,提出一种聚类算法,称为DBSCAN++。其基本思想是优先扩展拓展能力较强的核心对象。通过实验将DBSCAN++与DBSCAN和OPTICS进行对比,实验结果表明,从算法运行时间看,DBSCAN++比DBSCAN平均降低了60.7%,比OPTICS平均降低了70.2%;从聚类准确性角度看,DBSCAN++与DBSCAN和OPTICS相当。在没有影响聚类准确性的情况下,DBSCAN++具有更低的运行时间,是一种有效的聚类算法。展开更多
The Hypoexponential distribution is the distribution of the sum of n ≥ 2 independent Exponential random variables. This distribution is used in moduling multiple exponential stages in series. This distribution can be...The Hypoexponential distribution is the distribution of the sum of n ≥ 2 independent Exponential random variables. This distribution is used in moduling multiple exponential stages in series. This distribution can be used in many domains of application. In this paper we consider the case of n exponential Random Variable having distinct parameters. Using convolution, some properties ofLaplacetransform and the moment generating function, we analyse this case and give new properties and identities. Moreover, we shall study particular cases when are arithmetic and geometric.展开更多
文摘为降低DBSCAN算法的运行时间,结合MCMC(Markov chain Monte Carlo,马尔可夫链蒙特卡洛)采样方法对DBSCAN进行改进,提出一种聚类算法,称为DBSCAN++。其基本思想是优先扩展拓展能力较强的核心对象。通过实验将DBSCAN++与DBSCAN和OPTICS进行对比,实验结果表明,从算法运行时间看,DBSCAN++比DBSCAN平均降低了60.7%,比OPTICS平均降低了70.2%;从聚类准确性角度看,DBSCAN++与DBSCAN和OPTICS相当。在没有影响聚类准确性的情况下,DBSCAN++具有更低的运行时间,是一种有效的聚类算法。
文摘The Hypoexponential distribution is the distribution of the sum of n ≥ 2 independent Exponential random variables. This distribution is used in moduling multiple exponential stages in series. This distribution can be used in many domains of application. In this paper we consider the case of n exponential Random Variable having distinct parameters. Using convolution, some properties ofLaplacetransform and the moment generating function, we analyse this case and give new properties and identities. Moreover, we shall study particular cases when are arithmetic and geometric.
基金supported by the CNPC Basic Research Project for the 14th Five-Year Plan(No.2021DJ1803,2021DJ3502,2021DJ3503,2021DJ3605)CNPC Basic Research and Strategic Technical Research Project(No.2018D-500816)National Natural Science Foundation of China(No.41504110 and No.41874164)。