摘要
通过引入参数,利用实分析技巧,建立最佳常数因子与余割函数有关的Hilbert型积分不等式,推广了与Euler数有关的Hilbert型不等式.作为结论的应用,赋予参数不同的值,给出了一些特殊结果.
By introducing parameters and using the method of real analysis,we establish a Hilbert-type integral inequality with the best possible constant factor which is related to cosecant function.We also prove that the obtained inequality is a generalization of Hilbert-type inequality related to Euler number.Furthermore,as applications of the conclusion,some new and special results are presented by giving the parameters different values.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2016年第2期144-148,共5页
Journal of Zhejiang University(Science Edition)