靶材为铟锡氧化物(In_2O_3:SnO_2=1:1),用射频磁控溅射法在低温下制备了光电性能优良的 ITO 薄膜。质量流量计调节 Ar 气压强为0.2~3.0Pa,氧流量为0~10sccm,并详细探讨了溅射时氩气压强和氧流量变化对ITO 薄膜光学性能的影响。结果表...靶材为铟锡氧化物(In_2O_3:SnO_2=1:1),用射频磁控溅射法在低温下制备了光电性能优良的 ITO 薄膜。质量流量计调节 Ar 气压强为0.2~3.0Pa,氧流量为0~10sccm,并详细探讨了溅射时氩气压强和氧流量变化对ITO 薄膜光学性能的影响。结果表明:溅射 Ar 气压强为0.8Pa,氧流量为2.4sccm 时,薄膜的折射率最低 n=1.97,较接近增透膜的光学匹配。薄膜厚度为241.5nm 时,薄膜的最大透过率为89.4%(包括玻璃基体),方阻为75.9Ω/□,电导率为8.8×10^(-4)Ω·cm。展开更多
Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+) storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this ...Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+) storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this work,a one‐step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide.The pre‐intercalated Cu ions act as pillars to pin the vanadium oxide(V‐O)layers,establishing stabilized two‐dimensional channels for fast Zn^(2+) diffusion.The occupation of Mn ions between V‐O interlayer further expands the layer spacing and increases the concentration of oxygen defects(Od),which boosts the Zn^(2+) diffusion kinetics.As a result,as‐prepared Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O cathode shows outstanding Zn‐storage capabilities under room‐and lowtemperature environments(e.g.,440.3 mAh g^(−1) at room temperature and 294.3 mAh g^(−1)at−60°C).Importantly,it shows a long cycling life and high capacity retention of 93.4%over 2500 cycles at 2 A g^(−1) at−60°C.Furthermore,the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X‐ray powder diffraction and ex situ Raman characterizations.The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room‐/lowtemperature vanadium‐based cathode materials.展开更多
文摘靶材为铟锡氧化物(In_2O_3:SnO_2=1:1),用射频磁控溅射法在低温下制备了光电性能优良的 ITO 薄膜。质量流量计调节 Ar 气压强为0.2~3.0Pa,氧流量为0~10sccm,并详细探讨了溅射时氩气压强和氧流量变化对ITO 薄膜光学性能的影响。结果表明:溅射 Ar 气压强为0.8Pa,氧流量为2.4sccm 时,薄膜的折射率最低 n=1.97,较接近增透膜的光学匹配。薄膜厚度为241.5nm 时,薄膜的最大透过率为89.4%(包括玻璃基体),方阻为75.9Ω/□,电导率为8.8×10^(-4)Ω·cm。
基金National Natural Science Foundation of China,Grant/Award Numbers:52372188,51902090,51922008,520721142023 Introduction of studying abroad talent program,the China Postdoctoral Science Foundation,Grant/Award Number:2019 M652546+3 种基金Xinxiang Major Science and Technology Projects,Grant/Award Number:21ZD001Henan Province Postdoctoral Start‐Up Foundation,Grant/Award Number:1901017Henan Center for Outstanding Overseas Scientists,Grant/Award Number:GZS2018003Overseas Expertise Introduction Project for Discipline Innovation,Grant/Award Number:D17007。
文摘Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+) storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this work,a one‐step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide.The pre‐intercalated Cu ions act as pillars to pin the vanadium oxide(V‐O)layers,establishing stabilized two‐dimensional channels for fast Zn^(2+) diffusion.The occupation of Mn ions between V‐O interlayer further expands the layer spacing and increases the concentration of oxygen defects(Od),which boosts the Zn^(2+) diffusion kinetics.As a result,as‐prepared Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O cathode shows outstanding Zn‐storage capabilities under room‐and lowtemperature environments(e.g.,440.3 mAh g^(−1) at room temperature and 294.3 mAh g^(−1)at−60°C).Importantly,it shows a long cycling life and high capacity retention of 93.4%over 2500 cycles at 2 A g^(−1) at−60°C.Furthermore,the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X‐ray powder diffraction and ex situ Raman characterizations.The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room‐/lowtemperature vanadium‐based cathode materials.