A series of ethylene oxide-ethylene terephthalate segmented copolymers (EOET) weresynthesized and complexed with LiClO_4 to form some new polymer electrolytes. The EOET-LiClO_4 electrolytes exhibit not only high ionic...A series of ethylene oxide-ethylene terephthalate segmented copolymers (EOET) weresynthesized and complexed with LiClO_4 to form some new polymer electrolytes. The EOET-LiClO_4 electrolytes exhibit not only high ionic conductivity, but also good mechanical strengthand toughness. The EOET 3400--25--LiClO_4 complex possesses the highest conductivity (4. 65×10^(-5)s·cm^(-1) at room temperature when the ratio [Li^+]/[EO] equals 1/16. The structures of these electrolytes were examined with FTIR analysis, X-ray diffractionand DSC thermograms, and the results of high ionic conductivity of the segmented copolymerswere discussed.展开更多
In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A)...In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A), surface tension at CMC (γCMC). A linear decrease of ln[CMC] vs number of oxypropylene units in copolymer molecule was observed. The change in the work of cohesion per oxypropylene group when passing from molecular into micellar state, calculated from the Shinoda equation, was 0.43kT for the studied compounds.展开更多
文摘A series of ethylene oxide-ethylene terephthalate segmented copolymers (EOET) weresynthesized and complexed with LiClO_4 to form some new polymer electrolytes. The EOET-LiClO_4 electrolytes exhibit not only high ionic conductivity, but also good mechanical strengthand toughness. The EOET 3400--25--LiClO_4 complex possesses the highest conductivity (4. 65×10^(-5)s·cm^(-1) at room temperature when the ratio [Li^+]/[EO] equals 1/16. The structures of these electrolytes were examined with FTIR analysis, X-ray diffractionand DSC thermograms, and the results of high ionic conductivity of the segmented copolymerswere discussed.
基金Project (No. 2004C31058) supported by the Zhejiang ProvincialS&T Programme of China
文摘In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A), surface tension at CMC (γCMC). A linear decrease of ln[CMC] vs number of oxypropylene units in copolymer molecule was observed. The change in the work of cohesion per oxypropylene group when passing from molecular into micellar state, calculated from the Shinoda equation, was 0.43kT for the studied compounds.