介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penaliz...介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。展开更多
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, conti...The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.展开更多
文摘介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。
基金supported by the National Natural Science Foundation of China (Grants 11072009, 11172013)the Beijing Education Committee Development Project (Grant SQKM2016100 05001)the Beijing University of Technology Basic Research Fund (Grant 001000514313003)
文摘The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.