Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ...Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms.展开更多
This paper proposes Adaptive Genetic Algorithms Guided by structural knowledges coming from decomposition methods, for solving PCSPs. The family of algorithms called AGAGD_x_y is designed to be doubly genetic, meaning...This paper proposes Adaptive Genetic Algorithms Guided by structural knowledges coming from decomposition methods, for solving PCSPs. The family of algorithms called AGAGD_x_y is designed to be doubly genetic, meaning that any decomposition method and different heuristics for the genetic operators can be considered. To validate the approach, the decomposition algorithm due to Newman was used and several crossover operators based on structural knowledge such as the cluster, separator and the cut were tested. The experimental results obtained on the most challenging Minimum Interference-FAP problems of CALMA instances are very promising and lead to interesting perspectives to be explored in the future.展开更多
文摘Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms.
文摘This paper proposes Adaptive Genetic Algorithms Guided by structural knowledges coming from decomposition methods, for solving PCSPs. The family of algorithms called AGAGD_x_y is designed to be doubly genetic, meaning that any decomposition method and different heuristics for the genetic operators can be considered. To validate the approach, the decomposition algorithm due to Newman was used and several crossover operators based on structural knowledge such as the cluster, separator and the cut were tested. The experimental results obtained on the most challenging Minimum Interference-FAP problems of CALMA instances are very promising and lead to interesting perspectives to be explored in the future.