期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of CS-PSO algorithm in Bayesian network structure learning 被引量:3
1
作者 LI Jun-wu LI Guo-ning ZHANG Ding 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期94-102,共9页
In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particl... In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particle swarm optimization(PSO)is selected.Combined with the characteristics of BN structure,a BN structure learning algorithm of CS-PSO is proposed.Firstly,the CS algorithm is improved from the following three aspects:the maximum spanning tree is used to guide the initialization direction of the CS algorithm,the fitness of the solution is used to adjust the optimization and abandoning process of the solution,and PSO algorithm is used to update the position of the CS algorithm.Secondly,according to the structure characteristics of BN,the CS-PSO algorithm is applied to the structure learning of BN.Finally,chest clinic,credit and car diagnosis classic network are utilized as the simulation model,and the modeling and simulation comparison of greedy algorithm,K2 algorithm,CS algorithm and CS-PSO algorithm are carried out.The results show that the CS-PSO algorithm has fast convergence speed,high convergence accuracy and good stability in the structure learning of BN,and it can get the accurate BN structure model faster and better. 展开更多
关键词 Bayesian network structure learning cuckoo search and particle swarm optimization(cs-pso)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部