期刊文献+

Application of CS-PSO algorithm in Bayesian network structure learning 被引量:3

CS-PSO算法在贝叶斯网络结构学习中的应用
下载PDF
导出
摘要 In view of the shortcomings of traditional Bayesian network(BN)structure learning algorithm,such as low efficiency,premature algorithm and poor learning effect,the intelligent algorithm of cuckoo search(CS)and particle swarm optimization(PSO)is selected.Combined with the characteristics of BN structure,a BN structure learning algorithm of CS-PSO is proposed.Firstly,the CS algorithm is improved from the following three aspects:the maximum spanning tree is used to guide the initialization direction of the CS algorithm,the fitness of the solution is used to adjust the optimization and abandoning process of the solution,and PSO algorithm is used to update the position of the CS algorithm.Secondly,according to the structure characteristics of BN,the CS-PSO algorithm is applied to the structure learning of BN.Finally,chest clinic,credit and car diagnosis classic network are utilized as the simulation model,and the modeling and simulation comparison of greedy algorithm,K2 algorithm,CS algorithm and CS-PSO algorithm are carried out.The results show that the CS-PSO algorithm has fast convergence speed,high convergence accuracy and good stability in the structure learning of BN,and it can get the accurate BN structure model faster and better.
作者 LI Jun-wu LI Guo-ning ZHANG Ding 李俊武;李国宁;张钉(兰州交通大学自动化与电气工程学院,甘肃兰州730070)
出处 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期94-102,共9页 测试科学与仪器(英文版)
基金 National Natural Science Foundation of China(Nos.61164010,61233003)。
关键词 Bayesian network structure learning cuckoo search and particle swarm optimization(CS-PSO) 贝叶斯网络 结构学习 CS-PSO算法
  • 相关文献

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部