Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to cont...Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.展开更多
文摘Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.