The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other asso...The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.展开更多
In this paper, we study the perturbation of spectra for 2 ×2 operator matrices such as Mx ={A0 XB) AC and Mz = (Az CB) on the Hilbert space H K and the sets……
This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acous...This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acoustic waves in plasma.Indeed,the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method(HPTM)to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness.This approach is connected with the fuzzy generalized integral transform and HPTM.Besides that,two novel results for fuzzy generalized integral transforma-tion concerning fuzzy partial gH-derivatives are presented.Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method.Furthermore,2D and 3D simulations de-pict the comparison analysis between two fractional derivative operators(Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense)under generalized gH-differentiability.The projected method(GHPTM)demonstrates a diverse spectrum of applications for dealing with nonlinear wave equa-tions in scientific domains.The current work,as a novel use of GHPTM,demonstrates some key differ-ences from existing similar methods.展开更多
Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(...Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(β),decomposition property(δ)and Dunford’s property(C)and obtain the relationship of these properties between M_(C) and its entries.We explore how σ_(*)(M_(C))shrinks from σ_(*)(A)∪σ_(*)(B),where σ_(*)denotes σ_(β),σ_(δ),σ_(C),σ_(dec).In particular,we develop some sufficient conditions for equality σ_(*)(MC)=σ_(*)(A)∪σ_(*)(B).Besides,we consider the perturbation of these properties for MCand show that in perturbing with certain operators C the properties for MCkeeps with A,B.Some examples are given to illustrate our results.Furthermore,we study the decomposability for(0AB0).Finally,we give applications of decomposability for operator matrices.展开更多
: We consider an approximation problem related to strongly irreducible operators, that is, does the direct sum of a strongly irreducible operator in B∞(Ω) and certain operator have a small compact perturbation wh...: We consider an approximation problem related to strongly irreducible operators, that is, does the direct sum of a strongly irreducible operator in B∞(Ω) and certain operator have a small compact perturbation which is a strongly irreducible operator in B∞(Ω)? In this paper, we prove that the direct sum of any strongly irreducible operator in B∞(Ω) and certain biquasitriangular operator have small compact perturbations which are strongly irreducible operators in B∞(Ω).展开更多
In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, ...In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, we apply the obtained results to determine the S-essential spectra of an integro-differential operator with abstract boundary conditions in L1([-a,a]×[-1,1])(a〉0).展开更多
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R229), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia。
文摘The current investigation examines the fractional forced Korteweg-de Vries(FF-KdV) equation,a critically significant evolution equation in various nonlinear branches of science. The equation in question and other associated equations are widely acknowledged for their broad applicability and potential for simulating a wide range of nonlinear phenomena in fluid physics, plasma physics, and various scientific domains. Consequently, the main goal of this study is to use the Yang homotopy perturbation method and the Yang transform decomposition method, along with the Caputo operator for analyzing the FF-KdV equation. The derived approximations are numerically examined and discussed. Our study will show that the two suggested methods are helpful, easy to use, and essential for looking at different nonlinear models that affect complex processes.
基金Supported by the National Natural Science Foundation of China(No.10962004)Tianyuan Fund for Mathematics(No.11126307)+2 种基金the National Natural Science Foundation of Inner Mongolia(No.2011MS0104, 2012MS0105)the Research Program of Science at Universities of Inner Mongolia Autonomous Region(No.NJZZ11011)Program of Higher-level Talents of Inner Mongolia University(No.Z20100116)
文摘In this paper, we study the perturbation of spectra for 2 ×2 operator matrices such as Mx ={A0 XB) AC and Mz = (Az CB) on the Hilbert space H K and the sets……
文摘This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acoustic waves in plasma.Indeed,the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method(HPTM)to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness.This approach is connected with the fuzzy generalized integral transform and HPTM.Besides that,two novel results for fuzzy generalized integral transforma-tion concerning fuzzy partial gH-derivatives are presented.Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method.Furthermore,2D and 3D simulations de-pict the comparison analysis between two fractional derivative operators(Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense)under generalized gH-differentiability.The projected method(GHPTM)demonstrates a diverse spectrum of applications for dealing with nonlinear wave equa-tions in scientific domains.The current work,as a novel use of GHPTM,demonstrates some key differ-ences from existing similar methods.
基金Supported by National Natural Science Foundation of China(Grant No.11761029)Inner Mongolia Higher Education Science and Technology Research Project(Grant Nos.NJZY22323 and NJZY22324)Inner Mongolia Natural Science Foundation(Grant No.2018MS07020)。
文摘Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(β),decomposition property(δ)and Dunford’s property(C)and obtain the relationship of these properties between M_(C) and its entries.We explore how σ_(*)(M_(C))shrinks from σ_(*)(A)∪σ_(*)(B),where σ_(*)denotes σ_(β),σ_(δ),σ_(C),σ_(dec).In particular,we develop some sufficient conditions for equality σ_(*)(MC)=σ_(*)(A)∪σ_(*)(B).Besides,we consider the perturbation of these properties for MCand show that in perturbing with certain operators C the properties for MCkeeps with A,B.Some examples are given to illustrate our results.Furthermore,we study the decomposability for(0AB0).Finally,we give applications of decomposability for operator matrices.
基金The Specialized Research Fund (20050183002) for the Doctoral Program of Higher Educationthe NNSF (10371049 and J0630104) of China.
文摘: We consider an approximation problem related to strongly irreducible operators, that is, does the direct sum of a strongly irreducible operator in B∞(Ω) and certain operator have a small compact perturbation which is a strongly irreducible operator in B∞(Ω)? In this paper, we prove that the direct sum of any strongly irreducible operator in B∞(Ω) and certain biquasitriangular operator have small compact perturbations which are strongly irreducible operators in B∞(Ω).
文摘In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, we apply the obtained results to determine the S-essential spectra of an integro-differential operator with abstract boundary conditions in L1([-a,a]×[-1,1])(a〉0).