Based on the analysis of recent projections by the International Energy Agency(IEA),to meet the growing and subsequently declining demands of oil from now to 2040,we need up to around 770 billion barrels of oil.Since ...Based on the analysis of recent projections by the International Energy Agency(IEA),to meet the growing and subsequently declining demands of oil from now to 2040,we need up to around 770 billion barrels of oil.Since the worldwide total proved reserves of easy-and-cheaper-to-produce conventional oils is roughly only 520.2 billion barrels,the remaining 249.8 billion barrels must be obtained from unconventional petroleum resources(i.e.heavy oils and bitumen).These resources are however very difficult and costly to upgrade and produce due to their inherently high asphaltene contents which are reflected in their very high viscosities and large densities.However,still they should prove attractive development prospects if,as much as practicably possible,their upgrading can be performed in conjunction with in situ or downhole catalytic upgrading processes.Such projects will contribute significantly towards smoother and greener transition to full decarbonisation.Advanced technologies,such as the toe-to-heel air injection coupled to its add-on in situ catalytic process(i.e.THAI-CAPRI processes),have the potential to develop these reserves,but require further developmental understanding to realise their full capability.In this work,a new detailed procedure for numerically simulating the THAI-CAPRI processes is presented.The numerical model is made-up of Athabasca-type bitumen and it has a horizontal producer(HP)well that is surrounded by an annular layer of alumina-supported cobalt-oxide-molybdenum-oxide(CoMo/γ-Al2O3)catalyst.The simulation is performed using the computer modelling group(CMG)reservoir simulator,STARS.This new work has shown that the choice of the frequency factor of the catalytic reactions allowed model validation based on the degree of catalytic upgrading in form of API gravity.Overall,the work herein identifies the important parameters,such as API gravity,peak temperature,oil production rate,cumulative oil production,produced oxygen concentration,temperature distribution profile,extent of coke depositio展开更多
文摘Based on the analysis of recent projections by the International Energy Agency(IEA),to meet the growing and subsequently declining demands of oil from now to 2040,we need up to around 770 billion barrels of oil.Since the worldwide total proved reserves of easy-and-cheaper-to-produce conventional oils is roughly only 520.2 billion barrels,the remaining 249.8 billion barrels must be obtained from unconventional petroleum resources(i.e.heavy oils and bitumen).These resources are however very difficult and costly to upgrade and produce due to their inherently high asphaltene contents which are reflected in their very high viscosities and large densities.However,still they should prove attractive development prospects if,as much as practicably possible,their upgrading can be performed in conjunction with in situ or downhole catalytic upgrading processes.Such projects will contribute significantly towards smoother and greener transition to full decarbonisation.Advanced technologies,such as the toe-to-heel air injection coupled to its add-on in situ catalytic process(i.e.THAI-CAPRI processes),have the potential to develop these reserves,but require further developmental understanding to realise their full capability.In this work,a new detailed procedure for numerically simulating the THAI-CAPRI processes is presented.The numerical model is made-up of Athabasca-type bitumen and it has a horizontal producer(HP)well that is surrounded by an annular layer of alumina-supported cobalt-oxide-molybdenum-oxide(CoMo/γ-Al2O3)catalyst.The simulation is performed using the computer modelling group(CMG)reservoir simulator,STARS.This new work has shown that the choice of the frequency factor of the catalytic reactions allowed model validation based on the degree of catalytic upgrading in form of API gravity.Overall,the work herein identifies the important parameters,such as API gravity,peak temperature,oil production rate,cumulative oil production,produced oxygen concentration,temperature distribution profile,extent of coke depositio