Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. F...Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. FBG sensors, integrated into existing structures or embedded into new ones, have played a major role in assessing the safety and integrity of engineering structures. In this paper, a review on the latest research of the FBG-based SHM technique for composite field is presented. Firstly, the FBG sensing principle is briefly discussed and FBG and several other optical fiber sensors (OFSs) for SHM are performance-compared. Then, several examples of the use of FBG sensors in composite SHM are illustrated, including those from the field of cure monitoring, civil engineering, aviation, aerospace, marine and offshore platform. Finally, some existing problems are pointed out and some proposals for further researches are provided.展开更多
Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex proper...Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex properties, a novel adaptive control algorithm the basis of nonlinear OFS (orthonormal functional series) model is proposed. First, the hybrid model which combines OFS and Volterra series is introduced. Then, a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors. Finally, control simulations and experiments on a nonlinear process with varying time-delay are presented. A number of experimental results validate the efficiency and superiority of this algorithm.展开更多
1 The unique ocean forecasting system (OFS) based on FIO-COM The OFS is based on the surface wave-tide-circulation coupled ocean model developed by the First Institute of Oceanography (FIO-COM), Ministry of Natural Re...1 The unique ocean forecasting system (OFS) based on FIO-COM The OFS is based on the surface wave-tide-circulation coupled ocean model developed by the First Institute of Oceanography (FIO-COM), Ministry of Natural Resources, China. The half-century challenge that ocean circulation models must address is that the forecasting/simulated sea surface temperature overheats while the sub-surface temperature is too cold, especially during the summer. Qiao et al.(2004, 2010, 2016) found that the non-breaking surface wave can generate turbulence through wave-turbulence interaction, and they developed the wave-induced mixing theory, which has been confirmed by observations, laboratory experiments and model numerical simulations. As validated by ocean circulation models from various research groups, including Geophysical Fluid Dynamics Laboratory (GFDL) in the US (Fan and Griffies, 2014), Uppsala University of Sweden (Wu et al., 2015), Laboratoire d’Etudes en Geophysique et Oceanographie Spatiale (LEGOS) in France (Malek and Babanin, 2014), Budapest University of Technology and Economics in Hungary (Peter and Kramer, 2016) and the Ocean University of China (Lin et al., 2006), the non-breaking surface waveinduced vertical mixing (Bv) can always dramatically improve the simulation capacity of various ocean circulation models. The First Institute of Oceanography (FIO) research group found that tidal-induced mixing plays a key role in the formation of coastal upwelling, in the bottom mixed layer and in areas with sea mounts (Lv et al., 2006, 2008). With the above breakthroughs, the first surface wavetide-circulation coupled model of FIO-COM was developed in 2013. It was adopted to produce a reanalysis dataset for the period of January 2014 to April 2016, and it has been used for the operational OFS since May 2016. A highly efficient parallel scheme was designed to use the full capacity of Taihu Light with 10 649 600 CPU cores (Qiao et al., 2016), which earned a finalist nomination for the international Association for Computi展开更多
Two novel 3D metal-organic frameworks(MOFs)with cds network,{[Me NH_3]_7[Ln_8(Pg C_2)_2(H_2O)_y(HCOO)_7]}_n·x(Solvent)(FJI-Y4,FJI=Fujian Institute,Ln=Gd,y=12;FJI-Y5,Ln=Dy,y=11;Pg C_2=C-ethylpyrogallol[4]arene),ba...Two novel 3D metal-organic frameworks(MOFs)with cds network,{[Me NH_3]_7[Ln_8(Pg C_2)_2(H_2O)_y(HCOO)_7]}_n·x(Solvent)(FJI-Y4,FJI=Fujian Institute,Ln=Gd,y=12;FJI-Y5,Ln=Dy,y=11;Pg C_2=C-ethylpyrogallol[4]arene),based on unprecedented dimeric pyrogallol[4]arene-based Ln_8metal-organic nanocapsule(MONC)supramolecular building blocks and formate linkers,have been prepared under solvothermal conditions.To our best of knowledge,they present not only the first two examples of 3D hierarchical structures constructed from MONCs in metal-pyrogallol[4]arene system,but also the first two examples of MOFs based on lanthanide MONCs.Remarkably,the inner cavity volume of the Ln_8capsule in FJI-Y4 and FJI-Y5 is approximately151?~3,which is larger than those found in previous transition metal-seamed dimeric Pg C_n-based MONCs.Magnetic investigation on FJI-Y4 suggests a significant magnetocaloric effect(23.97 J kg^(-1)K^(-1),ΔH=7 T,2.5 K),while FJI-Y5 exhibits slow relaxation of the magnetization.展开更多
This article reviews my new optical fiber sensing (OFS) research activities in China for the last ten years at Chongqing University and University of Electronic Science and Technology of China, since I returned from...This article reviews my new optical fiber sensing (OFS) research activities in China for the last ten years at Chongqing University and University of Electronic Science and Technology of China, since I returned from UK in 1999. The research progress in long period fiber gratings (LPFGs), distributed fiber sensing systems and microfiber sensors is introduced. For LPFGs, the processing method with high-frequency CO2 laser pulses types of LPFGs fabricated and the related applications for both optical sensing and optical communication are described. For distributed fiber sensing systems, the fiber-optic polarization optical time domain reflectometer (POTDR), fiber-optic phase-sensitive optical time domain reflectometer (φ-OTDR) and Brillouin optical time-domain analyzer (BOTDA) are developed, respectively. For microfiber sensors, we mainly focus on the knot resonator and its application for sensing of the refractive index and acceleration, etc.展开更多
基金the National High Technology Research and Development Program (863) of China(No. 2011AA7052011)the National Natural Science Foundation of China (No. 51205253)
文摘Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. FBG sensors, integrated into existing structures or embedded into new ones, have played a major role in assessing the safety and integrity of engineering structures. In this paper, a review on the latest research of the FBG-based SHM technique for composite field is presented. Firstly, the FBG sensing principle is briefly discussed and FBG and several other optical fiber sensors (OFSs) for SHM are performance-compared. Then, several examples of the use of FBG sensors in composite SHM are illustrated, including those from the field of cure monitoring, civil engineering, aviation, aerospace, marine and offshore platform. Finally, some existing problems are pointed out and some proposals for further researches are provided.
文摘Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex properties, a novel adaptive control algorithm the basis of nonlinear OFS (orthonormal functional series) model is proposed. First, the hybrid model which combines OFS and Volterra series is introduced. Then, a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors. Finally, control simulations and experiments on a nonlinear process with varying time-delay are presented. A number of experimental results validate the efficiency and superiority of this algorithm.
基金The National Natural Science Foundation of China under contract No.41821004the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405+1 种基金the International Cooperation Project of Indo-Pacific Ocean Environment Variation and Air-Sea Interaction under contract No.GASI-IPOVAI-05the IOC/WESTPAC OFS Project
文摘1 The unique ocean forecasting system (OFS) based on FIO-COM The OFS is based on the surface wave-tide-circulation coupled ocean model developed by the First Institute of Oceanography (FIO-COM), Ministry of Natural Resources, China. The half-century challenge that ocean circulation models must address is that the forecasting/simulated sea surface temperature overheats while the sub-surface temperature is too cold, especially during the summer. Qiao et al.(2004, 2010, 2016) found that the non-breaking surface wave can generate turbulence through wave-turbulence interaction, and they developed the wave-induced mixing theory, which has been confirmed by observations, laboratory experiments and model numerical simulations. As validated by ocean circulation models from various research groups, including Geophysical Fluid Dynamics Laboratory (GFDL) in the US (Fan and Griffies, 2014), Uppsala University of Sweden (Wu et al., 2015), Laboratoire d’Etudes en Geophysique et Oceanographie Spatiale (LEGOS) in France (Malek and Babanin, 2014), Budapest University of Technology and Economics in Hungary (Peter and Kramer, 2016) and the Ocean University of China (Lin et al., 2006), the non-breaking surface waveinduced vertical mixing (Bv) can always dramatically improve the simulation capacity of various ocean circulation models. The First Institute of Oceanography (FIO) research group found that tidal-induced mixing plays a key role in the formation of coastal upwelling, in the bottom mixed layer and in areas with sea mounts (Lv et al., 2006, 2008). With the above breakthroughs, the first surface wavetide-circulation coupled model of FIO-COM was developed in 2013. It was adopted to produce a reanalysis dataset for the period of January 2014 to April 2016, and it has been used for the operational OFS since May 2016. A highly efficient parallel scheme was designed to use the full capacity of Taihu Light with 10 649 600 CPU cores (Qiao et al., 2016), which earned a finalist nomination for the international Association for Computi
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)the National Natural Science Foundation of China (21390392, 51603206)the Nature Science Foundation of Fujian Province (2016J05056)
文摘Two novel 3D metal-organic frameworks(MOFs)with cds network,{[Me NH_3]_7[Ln_8(Pg C_2)_2(H_2O)_y(HCOO)_7]}_n·x(Solvent)(FJI-Y4,FJI=Fujian Institute,Ln=Gd,y=12;FJI-Y5,Ln=Dy,y=11;Pg C_2=C-ethylpyrogallol[4]arene),based on unprecedented dimeric pyrogallol[4]arene-based Ln_8metal-organic nanocapsule(MONC)supramolecular building blocks and formate linkers,have been prepared under solvothermal conditions.To our best of knowledge,they present not only the first two examples of 3D hierarchical structures constructed from MONCs in metal-pyrogallol[4]arene system,but also the first two examples of MOFs based on lanthanide MONCs.Remarkably,the inner cavity volume of the Ln_8capsule in FJI-Y4 and FJI-Y5 is approximately151?~3,which is larger than those found in previous transition metal-seamed dimeric Pg C_n-based MONCs.Magnetic investigation on FJI-Y4 suggests a significant magnetocaloric effect(23.97 J kg^(-1)K^(-1),ΔH=7 T,2.5 K),while FJI-Y5 exhibits slow relaxation of the magnetization.
文摘This article reviews my new optical fiber sensing (OFS) research activities in China for the last ten years at Chongqing University and University of Electronic Science and Technology of China, since I returned from UK in 1999. The research progress in long period fiber gratings (LPFGs), distributed fiber sensing systems and microfiber sensors is introduced. For LPFGs, the processing method with high-frequency CO2 laser pulses types of LPFGs fabricated and the related applications for both optical sensing and optical communication are described. For distributed fiber sensing systems, the fiber-optic polarization optical time domain reflectometer (POTDR), fiber-optic phase-sensitive optical time domain reflectometer (φ-OTDR) and Brillouin optical time-domain analyzer (BOTDA) are developed, respectively. For microfiber sensors, we mainly focus on the knot resonator and its application for sensing of the refractive index and acceleration, etc.