期刊文献+

基于神经网络的视觉伺服机器人摄像机标定 被引量:4

Camera calibration for visual servoing robots based on the neural network
下载PDF
导出
摘要 采用可调节点径向基函数神经网络实现视觉伺服机器人摄像机标定。首先将基于leave-one-out准则的orthogonalforward selection算法扩展到多入多出的RBF网络,建立摄像机标定的RBF网络模型。通过应用卡内基—梅隆大学标定图像实验室提供的标定数据进行仿真试验,验证此方法的有效性。由于OFS-LOO算法可构造出具有稀疏隐层节点的RBF网络,使网络具有较好的泛化推广能力,同时RBF网络为局部逼近网络,因此,此标定方法具有较高的标定精度和较强的标定实时性,适用于视觉伺服的摄像机标定。 In this paper,a new approach based on the radial basis function network for solving the camera calibration problem is proposed.In this approach,an orthogonal forward selection algorithm based on the leave-one-out criterion is applied to the multi-input and multi-output RBF network,and we build the RBF network modle of the camera calibration.The results of the simulation of the experiment indicates that the methed is valid.Because the method has the features of the higher precision and the real time,it is the same with the camera calibration of the visual servoing.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z1期814-816,共3页 Chinese Journal of Scientific Instrument
基金 河北省自然科学基金(A2006000941)
关键词 视觉伺服 摄像机标定 RBF神经网络 OFS-LOO算法 visual servoing camera calibration RBF network OFS-LOO a algorithm
  • 相关文献

参考文献8

  • 1[1]Moody J E.The effective number of parameters:an analysis of generalization and regularization in nonlinear learning systems[J].In Advances in Neural Information Processing Systems4,San Mateo,CA,1992,847-854. 被引量:1
  • 2[2]Moody J E,Darken C.Fast learning in networks of locally tuned processing units[J].Neural Computation,1989,1 (2):281-294. 被引量:1
  • 3[3]Chen S,Cowan C F N,Grant P M.Orthogonal least squares learning algorithms for radial basis function networks[J].IEEE Trans.Neural Networks,1991,2(2):302-309. 被引量:1
  • 4[4]Sherstinsky A and Picard R W.On the efficiency of the orthogonal least squares training method for radial basis function networks[J].IEEE Trans.Neural Networks,1996,7(1):195-200. 被引量:1
  • 5[5]Chen S,Chng E S and Alkadhimi K:Regularised orthogonal least squares algorithm for constructing radial basis function networks[J].Int.J.Contr.,1996,64(5):829-837. 被引量:1
  • 6[6]S Chen,Hong X and Harris Orthogonal C J.forward selection for constructing the radial basis function network with tunable nodes[Z] In Proceedings of IEEE International Conference on Intelligent Computing,2005(1):777-786. 被引量:1
  • 7[7]Chen S,Wang X.X,C.J.Harris.Experiments with Repeating Weighted Boosting Search for Optimization in Signal Processing Applications[Z].IEEE Trans.Systems,Man and Cybernetics,Part B 35 (2005) 682-693. 被引量:1
  • 8[8]http://www.cs.cmu.edu/-cil/cil-ster.html 被引量:1

同被引文献35

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部