期刊文献+
共找到326篇文章
< 1 2 17 >
每页显示 20 50 100
CMIP5全球气候模式对中国黄河流域气候模拟能力的评估 被引量:27
1
作者 周文翀 韩振宇 《气象与环境学报》 2018年第6期42-55,共14页
利用格点化观测资料,对第5次耦合模式比较计划(Coupled Model Intercomparison Project phase 5,CMIP5)提供的18个全球气候模式在黄河流域的模拟能力进行评估和客观选择。结果表明:基于1961—2005年黄河流域逐日的气温和降水观测资料,... 利用格点化观测资料,对第5次耦合模式比较计划(Coupled Model Intercomparison Project phase 5,CMIP5)提供的18个全球气候模式在黄河流域的模拟能力进行评估和客观选择。结果表明:基于1961—2005年黄河流域逐日的气温和降水观测资料,对黄河流域气候进行了模拟评估,通过对气候平均态、年际变率、季节循环、年际变化主要模态及概率密度函数等方面的模拟能力进行统计评价,分析得到所有模式模拟能力的综合评分排序,剔除较差的模式样本。最终选择的5个全球气候模式分别为MIROC-ESM-CHEM、CSIRO-Mk3-6-0、NorESM1-M、CNRM-CM5和EC-EARTH,5个全球气候模式综合评分较优,且基本可以覆盖18个CMIP5模式对黄河流域未来平均气温预估的不确定性分布,形成了可用于黄河流域气候变化研究的多模式集合系统。 展开更多
关键词 黄河流域 CMIP5 综合评估 客观选择 不确定性
下载PDF
高等职业教育课程模式的选择与建构 被引量:8
2
作者 张健 《职业技术教育》 北大核心 2009年第25期42-46,共5页
高等职业教育课程模式的选择与建构,应该依据并符合课程目标要求,符合特定课程内容需要,符合高职教育的特点和规律,具有良好的课程效果预期,这样的课程模式有如下几种:情境化课程模式、综合性课程模式、经验性课程模式、实践性课程模式。
关键词 高等职业教育 课程模式 课程目标 课程特征 选择与建构
下载PDF
基于多目标优化的科研项目人力资源配置研究 被引量:8
3
作者 刘鹏飞 贺霞旭 何克晶 《计算机应用与软件》 2017年第5期217-222,321,共7页
以高校科技项目管理为实际背景,分析了人力资源优化的必要性,研究了在多个优化目标下科研项目和参与人员的双边匹配问题。首先给出支持成员分组的双边匹配问题的数学描述;在此基础上,以最优化合理分组的三个实际指标为目标,建立双边匹... 以高校科技项目管理为实际背景,分析了人力资源优化的必要性,研究了在多个优化目标下科研项目和参与人员的双边匹配问题。首先给出支持成员分组的双边匹配问题的数学描述;在此基础上,以最优化合理分组的三个实际指标为目标,建立双边匹配多目标决策模型,并依据该模型的特点设计了基于多目标遗传算法的求解方法。在匹配模型的基础上,设计了基于浏览器/服务器架构的人力资源管理系统以提高实用性。最后通过一个实例验证了模型的有效性和可行性。 展开更多
关键词 多目标 成员选择 匹配 科研团队
下载PDF
Optimization of maintenance strategy for high-speed railwaycatenary system based on multistate model 被引量:7
4
作者 YU Guo-liang SU Hong-sheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期348-360,共13页
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ... A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible. 展开更多
关键词 high-speed railway CATENARY multi-objective optimization non-dominated sorting genetic algorithm 2(NSGA2) selection operator local search Pareto solutions
下载PDF
基于顾客满意度的客户订单选择 被引量:5
5
作者 郭源生 《西安电子科技大学学报(社会科学版)》 2007年第6期36-40,共5页
本文以客户订单选择为研究对象,提出了一个基于顾客满意度的目标规划模型。该模型将顾客对某项因素的满意度折换成可以衡量的量,同时考虑交货期、价格、订单被拒的失望值三个因素。通过对满意度的比较,企业可以得出最优的生产选择。
关键词 目标规划模型 顾客满意度 订单选择
下载PDF
Retrieval Single-Doppler Radar Wind with Variational Assimilation Method-Part I: Objective Selection of Functional Weighting Factors 被引量:5
6
作者 魏鸣 党人庆 葛文忠 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第4期123-138,共16页
In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods ... In variational problem, the selection of functional weighting factors (FWF) is one of the key points for discussing many relevant studies. To overcome arbitrariness and subjectivity of the empirical selecting methods used widely at present, this paper tries to put forward an optimal objective selecting method of FWF. The focus of the study is on the weighting factors optimal selection in the variation retrieval single-Doppler radar wind field with the simple adjoint models. Weighting factors in the meaning of minimal variance are calculated out with the matrix theory and the finite difference method of partial differential equation. Experiments show that the result is more objective comparing with the factors obtained with the empirical method. 展开更多
关键词 Variation Weighting factor Minimum variance objective selection
下载PDF
我国存款保险制度若干问题研究 被引量:4
7
作者 唐明琴 沈福喜 郑尊信 《财经理论与实践》 北大核心 2002年第6期27-30,共4页
国外存款保险制度的实践表明 :存款保险制度对保护存款人利益和维护金融体系的稳定等方面 ,有着积极的作用 ,但也存在道德风险与逆向选择等负面影响。近 2 0年来有 5 2个国家和地区建立了自己的存款保险制度 ,表明在经济全球化、放松金... 国外存款保险制度的实践表明 :存款保险制度对保护存款人利益和维护金融体系的稳定等方面 ,有着积极的作用 ,但也存在道德风险与逆向选择等负面影响。近 2 0年来有 5 2个国家和地区建立了自己的存款保险制度 ,表明在经济全球化、放松金融管制的背景下 ,存款保险制度的重要性日益突出。我国建立强制参保方式、具有层次性的监管 -理赔型部分存款保险制度 ,有利于加强金融监管和健全金融体系 ,是我国银行业应对加入 WTO挑战的重要措施之一。 展开更多
关键词 存款保险制度 中国 对策
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
8
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
Selection Method of Multi-Objective Problems Using Genetic Algorithm in Motion Plan of AUV 被引量:3
9
作者 ZHANG Ming-jun , ZHENG Jin-xing , ZHANG Jing College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001 ,China College of Computer and Information Science, Harbin Engineering University, Harbin 150001 , China 《Journal of Marine Science and Application》 2002年第1期81-86,共6页
To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as... To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible. 展开更多
关键词 AUV multi objective optimization genetic algorithm selection method
下载PDF
多目标大规模供水管网监测点选址方法研究
10
作者 潘沁 《科学技术创新》 2024年第3期1-4,共4页
传统的供水管网监测点选址方法,只能检测监测点低负压状态,不能确定监测点低负压值,使得监测点可视面积小并且风险地区面积大,因此设计一种多目标大规模供水管网监测点选址方法。通过计算每一监测点水压值和监测点与上一监测点最大高程... 传统的供水管网监测点选址方法,只能检测监测点低负压状态,不能确定监测点低负压值,使得监测点可视面积小并且风险地区面积大,因此设计一种多目标大规模供水管网监测点选址方法。通过计算每一监测点水压值和监测点与上一监测点最大高程正差,确定监测点低负压。在压力监测、流量监测和水质监测三个适应度函数的基础上,进一步设计多目标大规模供水管网监测点选址的适应度函数。根据水压变化率可以得到供水管网监测点选址模型的约束条件需水量影响矩阵,根据需水量影响矩阵建立供水管网监测点选址模型。监测点应覆盖供水管网的各个部分,考虑供水管网的地理分布、当地的社会经济状况和供水服务的要求,至此完成多目标大规模供水管网监测点选址。实验结果表明,设计的多目标大规模供水管网监测点选址方法,选择监测点可视面积大并且风险地区面积小,证明设计的方法好,有一定的研究价值。 展开更多
关键词 多目标 大规模 供水管网 监测点 选址
下载PDF
基于多目标决策的竖井施工方案优选
11
作者 李亚军 《世界有色金属》 2024年第11期199-201,共3页
竖井施工方案的选择涉及施工效率、经济性、安全性和环保性等多个关键维度。为实现这些目标的综合优化,本文首先构建了包括施工速度、单位掘进成本、施工安全性等在内的多目标优选指标体系。随后,收集各施工方案在效率、经济、安全、环... 竖井施工方案的选择涉及施工效率、经济性、安全性和环保性等多个关键维度。为实现这些目标的综合优化,本文首先构建了包括施工速度、单位掘进成本、施工安全性等在内的多目标优选指标体系。随后,收集各施工方案在效率、经济、安全、环保方面的指标数据作为分析样本,并运用优属度公式对数据进行归一化处理。在此基础上,提取理想最优与最劣方案的优属度向量。进一步,采用层次分析法为各项指标分配权重,并据此计算各竖井施工方案的权距优距离和权距劣距离。以最小化权距优、劣距离平方和为目标,求解出各方案的最优隶属度值。通过对比各方案的隶属度值,可确定综合最优的竖井施工方案。实践验证表明,该方法能有效指导矿山竖井施工方案的优选。 展开更多
关键词 竖井 施工 多目标 优选
下载PDF
Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization
12
作者 Mehrdad Shoeibi Mohammad Mehdi Sharifi Nevisi +3 位作者 Reza Salehi Diego Martín Zahra Halimi Sahba Baniasadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期3469-3493,共25页
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ... Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of 展开更多
关键词 Hyperspectral image classification reinforcement learning multi-objective binary grey wolf optimizer band selection
下载PDF
基于INSGA-Ⅱ高维目标柔性作业车间调度的优化 被引量:4
13
作者 李丹 向凤红 毛剑琳 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第2期341-348,共8页
高维目标柔性作业车间调度问题(many-objective flexible job shop scheduling problem, MaOFJSP)是指在实际生产中根据企业不同部门的要求,对车间生产寄予不同的期望,使各个部门利益最大化的调度决策。针对完工时间、拖期时长、机器负... 高维目标柔性作业车间调度问题(many-objective flexible job shop scheduling problem, MaOFJSP)是指在实际生产中根据企业不同部门的要求,对车间生产寄予不同的期望,使各个部门利益最大化的调度决策。针对完工时间、拖期时长、机器负荷、能耗4个优化目标,提出了改进非支配解遗传算法(improved non-dominated sorting genetic algorithm, INSGA-Ⅱ)来求解MaOFJSP,同时对算法的编码解码、Pareto排序、选择策略、交叉变异操作进行了研究。采用工序排序和机器选择的双层个体编码方式,在精英选择过程中计算个体的斜率,斜率小的进入到父代,使得优秀个体得以保存;在变异环节中基于关键工序块邻域结构,采用插入法让工序小的工件优先加工,使得最大完工时间明显变小。通过该算法对不同算例进行的Matlab模拟仿真,验证了该模型的可行性和算法的优越性。 展开更多
关键词 高维目标 非支配解遗传算法 精英选择 关键工序
下载PDF
Structural failure analysis with CMS-based ground motion selection using innovative cost function and weight factors
14
作者 Delbaz Samadian Imrose B.Muhit Nashwan Dawood 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期899-918,共20页
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec... The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects. 展开更多
关键词 weighted objective function ground motion selection steel moment resisting frame hazard analysis
下载PDF
Constrained Multi-Objective Optimization With Deep Reinforcement Learning Assisted Operator Selection
15
作者 Fei Ming Wenyin Gong +1 位作者 Ling Wang Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期919-931,共13页
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev... Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs. 展开更多
关键词 Constrained multi-objective optimization deep Qlearning deep reinforcement learning(DRL) evolutionary algorithms evolutionary operator selection
下载PDF
基于自学习二元差分进化的多目标特征选择
16
作者 胡振稳 杨改贞 《计算机应用与软件》 北大核心 2024年第5期274-285,共12页
为提升特征选择算法的搜索能力,加快收敛速度,提出一种基于自学习二元差分进化的多目标特征选择方法。引入三种算子,基于概率差的二元变异算子来产生最优解,从而快速地引导个体定位潜在的最优区域。另外,引入的净化搜索算子可以提高处... 为提升特征选择算法的搜索能力,加快收敛速度,提出一种基于自学习二元差分进化的多目标特征选择方法。引入三种算子,基于概率差的二元变异算子来产生最优解,从而快速地引导个体定位潜在的最优区域。另外,引入的净化搜索算子可以提高处于最优区域的精英个体的自学习能力,而具有拥挤距离的非支配排序算子可以降低差分进化中选择算子的计算复杂度。在多个数据集的实验结果表明,提出的方法能够实现高效精确的多目标特征选择。 展开更多
关键词 自学习 二元差分 多目标 特征选择
下载PDF
主客观结合的水下连接器拉近工具液压系统方案遴选方法
17
作者 刘伟丰 运飞宏 +6 位作者 王立权 姚绍明 刘冬 郝孝泉 孙照威 王刚 贾鹏 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第11期2250-2258,共9页
拉近工具需要合格的液压系统方案以克服连接器和跨接管的偏载,本文针对拉近工具液压系统的性能可靠性提出了一种主客观结合的方案遴选方法,以确保遴选方案的可信度和无偏性。采用层次分析法对拉近工具液压系统的关键性能确立了遴选目标... 拉近工具需要合格的液压系统方案以克服连接器和跨接管的偏载,本文针对拉近工具液压系统的性能可靠性提出了一种主客观结合的方案遴选方法,以确保遴选方案的可信度和无偏性。采用层次分析法对拉近工具液压系统的关键性能确立了遴选目标,包括主观方面和客观方面的评估。主观方面通过专家经验和二元对比排序法比较各系统关键性能的对比度,建立了拉近工具失效造成的维修工期隶属函数,确定了各液压系统的功能指数。同时,通过计算各液压系统的搭建成本,确定了其价值指数。最终,结合价值工程理论,选定了分流集流阀和调速阀控制的同步回路作为拉近工具的液压系统方案。为了保证方案的可靠性,本文利用AMEsim仿真软件进行了仿真以及出厂试验,验证了该方案的实用性。 展开更多
关键词 拉近工具 主客观 液压系统 层次分析法 遴选目标 功能指数 价值指数 可靠性
下载PDF
基于特征选择遗传算法对混合动力汽车的研究 被引量:3
18
作者 朱天军 胡伟 王林 《机械设计与制造》 北大核心 2020年第3期85-89,共5页
针对传统遗传算法优化串联式混合动力汽车时燃油经济性和排放性不佳、优化运行时间过长的问题,提出一种基于特征选择遗传算法的串联式混合动力汽车系统参数和控制策略参数的多目标优化算法,并建立以动力性能指标为约束的混合动力汽车参... 针对传统遗传算法优化串联式混合动力汽车时燃油经济性和排放性不佳、优化运行时间过长的问题,提出一种基于特征选择遗传算法的串联式混合动力汽车系统参数和控制策略参数的多目标优化算法,并建立以动力性能指标为约束的混合动力汽车参数优化的非线性模型,其中目标函数包含最佳的燃油消耗和排放等指标。首先对目标函数的可行解空间进行特征选择,筛选出与目标函数相关度较高的可行解,并将基于特征选择的优化方法与传统遗传算法相结合,对其控制参数进行优化。其次通过ADVISOR仿真程序,计算出目标函数的最佳燃油消耗量和排放值。仿真结果表明:与传统的遗传算法相比,燃油经济性提高9.96%,CO、HC和NOX的排放分别降低18.07%、26.71%以及15.61%,同时优化运行时间降低62.14%。 展开更多
关键词 串联式混合动力汽车 多目标优化 目标函数 特征选择 控制参数
下载PDF
Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems 被引量:3
19
作者 Zhihua Cui Lihong Zhao +3 位作者 Youqian Zeng Yeqing Ren Wensheng Zhang Xiao-Zhi Gao 《Complex System Modeling and Simulation》 2021年第4期291-307,共17页
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex... With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions. 展开更多
关键词 pigeon-inspired optimization algorithm many-objective optimization problem multiple selection strategy elite individual retention
原文传递
基于信息熵的炮兵射击目标选优分析 被引量:3
20
作者 唐克 孙来彬 管继平 《指挥控制与仿真》 2007年第5期52-53,共2页
针对炮兵射击目标选择的特点,运用信息熵权重和层次分析方法,建立射击目标选择的数学模型,得到炮兵射击目标的合理排序。最后得出利用信息熵和层次分析法对射击目标进行选择,比单纯运用层次分析法收敛速度快,又利于计算机软件实现,为炮... 针对炮兵射击目标选择的特点,运用信息熵权重和层次分析方法,建立射击目标选择的数学模型,得到炮兵射击目标的合理排序。最后得出利用信息熵和层次分析法对射击目标进行选择,比单纯运用层次分析法收敛速度快,又利于计算机软件实现,为炮兵作战指挥自动化系统辅助决策提供了一种新的方法。 展开更多
关键词 信息熵 射击目标 层次分析法 选优
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部