The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach...The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach space. Under suitable conditions, it was proved that the iterative sequence converges strongly to a common fixed point which was also the unique solution of some variational inequality in a reflexive Banach space. The results presented extend and improve some recent results.展开更多
设E是一致光滑的Banach空间,C是E之一非空闭凸子集.设f:G→C是一压缩映象。T_1,T_2,…,T_n:C→G是一有限簇非扩张映象且∩ from i=1 to N(F(T_i)≠Ф).本文用黏性逼近方法证明了,由(1.4)式定义的迭代序列{x_n}强收敛于T_1,T_2,…,T_N的...设E是一致光滑的Banach空间,C是E之一非空闭凸子集.设f:G→C是一压缩映象。T_1,T_2,…,T_n:C→G是一有限簇非扩张映象且∩ from i=1 to N(F(T_i)≠Ф).本文用黏性逼近方法证明了,由(1.4)式定义的迭代序列{x_n}强收敛于T_1,T_2,…,T_N的一公共不动点的充分必要条件.本文结果也推广和改进了最近一些人的最新结果.展开更多
E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+...E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xx)+βnTrnnyn yn=(1-γn)xn+γnTrnnxn,n≥0其中{αn},{βn},{γn}[0,1],rn=n mod N.文章在一定条件下,用黏性逼近法证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.该文结果推广和改进了一些文献的最新结果.展开更多
设f是一个压缩常数为h的压缩映象,T是一个非扩张映象使得F(T)≠Φ。{xn}是由下式xn+1=αnf(xn)+(1-αn)1/n+1 sum Tjxn from j=0 to n,n∈N,定义的迭代序列,其中{αn}(0,1)且满足lim αn=0 n→∞和sum αn=∞ from n=1 to ∞。证明{...设f是一个压缩常数为h的压缩映象,T是一个非扩张映象使得F(T)≠Φ。{xn}是由下式xn+1=αnf(xn)+(1-αn)1/n+1 sum Tjxn from j=0 to n,n∈N,定义的迭代序列,其中{αn}(0,1)且满足lim αn=0 n→∞和sum αn=∞ from n=1 to ∞。证明{xn}强收敛于F(T)中某个变分不等式的唯一解。结果改进了Xu,Shimizu-Takahashi和Shioji-Takahashi的主要结果。展开更多
基金the Natural Science Foundation of Yibin University (No.2005Z3)
文摘The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach space. Under suitable conditions, it was proved that the iterative sequence converges strongly to a common fixed point which was also the unique solution of some variational inequality in a reflexive Banach space. The results presented extend and improve some recent results.
文摘设E是一致光滑的Banach空间,C是E之一非空闭凸子集.设f:G→C是一压缩映象。T_1,T_2,…,T_n:C→G是一有限簇非扩张映象且∩ from i=1 to N(F(T_i)≠Ф).本文用黏性逼近方法证明了,由(1.4)式定义的迭代序列{x_n}强收敛于T_1,T_2,…,T_N的一公共不动点的充分必要条件.本文结果也推广和改进了最近一些人的最新结果.
文摘E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2…,TN∶K→K是具序列{kn}[1,+∞),lim kn=1 n→∞的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩F(Ti)≠Φ from i=1 to N.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xx)+βnTrnnyn yn=(1-γn)xn+γnTrnnxn,n≥0其中{αn},{βn},{γn}[0,1],rn=n mod N.文章在一定条件下,用黏性逼近法证明了迭代序列{xn}强收敛于T1,T2,…,TN的公共不动点.该文结果推广和改进了一些文献的最新结果.
文摘设f是一个压缩常数为h的压缩映象,T是一个非扩张映象使得F(T)≠Φ。{xn}是由下式xn+1=αnf(xn)+(1-αn)1/n+1 sum Tjxn from j=0 to n,n∈N,定义的迭代序列,其中{αn}(0,1)且满足lim αn=0 n→∞和sum αn=∞ from n=1 to ∞。证明{xn}强收敛于F(T)中某个变分不等式的唯一解。结果改进了Xu,Shimizu-Takahashi和Shioji-Takahashi的主要结果。