Robust optimization approach for aerodynamic design has been developed and applied to supercritical wing aerodynamic design. The aerodynamic robust optimization design system consists of genetic optimization algorithm...Robust optimization approach for aerodynamic design has been developed and applied to supercritical wing aerodynamic design. The aerodynamic robust optimization design system consists of genetic optimization algorithm, improved back propagation (BP) neural network and deformation grid technology. In this article, the BP neural network has been improved in two major aspects to enhance the training speed and precision. Uniformity sampling is adopted to generate samples which will be used to establish surrogate model. The testing results show that the prediction precision of the improved BP neural network is reliable. On the assumption that the law of Mach number obeys normal distribution, supercritical wing configuration considering fuselage interfering of a certain aerobus has been taken as a typical example, and five design sections and twist angles have been optimized. The results show that the optimized wing, which considers robust design, has better aerodynamic characteristics. What's more, the intensity of shock wave has been reduced.展开更多
The PLIC/SN method that combines the second-order volume tracking method (PLIC-VOF) with the equation of surface normal (SN) vector was recently proposed (M. Sun, “Volume Tracking of Subgrid Particles,” Internationa...The PLIC/SN method that combines the second-order volume tracking method (PLIC-VOF) with the equation of surface normal (SN) vector was recently proposed (M. Sun, “Volume Tracking of Subgrid Particles,” International Journal for Numerical Methods in Fluids, Vol. 66, No. 12, 2011, pp. 1530-1554). The method is able to track the motion of a subgrid particle, but the accuracy is not as good as expected on high resolution grids for vortical flows. In this paper, a simple unsplit multidimensional advection algorithm is coupled with the equation of SN vector. The advection algorithm is formulated as the finite volume method, so that it can be used readily for both structured and unstructured grids while maintaining the exact mass conservation. The new method improves the accuracy significantly for high resolution grids. In the well-known test of the time-resolved vortex problem of T = 2, the circular interface is resolved with an accuracy better than ever using the equation of SN vector.展开更多
选择在600m^30km16个尺度上,在ArcGIS中利用常用的面积最大值法(Rule of Maximum Area,RMA)对2005年四川省1:25万土地覆被矢量数据进行栅格化,并采用两种属性精度损失评估方法:传统的常规分析方法和一种新的基于栅格单元分析方法,来对...选择在600m^30km16个尺度上,在ArcGIS中利用常用的面积最大值法(Rule of Maximum Area,RMA)对2005年四川省1:25万土地覆被矢量数据进行栅格化,并采用两种属性精度损失评估方法:传统的常规分析方法和一种新的基于栅格单元分析方法,来对比分析在这两种评估方法下RMA栅格化的属性(这里是指面积)精度损失随尺度的变化特征。结果表明:(1)在同一尺度下采用基于栅格单元方法分析所得的研究区平均属性精度损失大于常规分析方法分析得到的平均属性精度损失,且二者之间的差异在1~10km内很明显,当栅格单元大于10km时,两种方法得到的平均属性精度损失的差值稳定,且其随尺度的变化曲线趋于平行;(2)基于栅格单元分析方法不仅能够准确地定量估计RMA栅格化的属性精度损失,而且能客观地反映属性精度损失的空间分布规律;(3)对四川省1:25万土地覆被数据进行面积最大值法(RMA)栅格化的适宜尺度域最好不要超过800m,在该尺度域内数据工作量适宜,且RMA栅格化属性精度损失小于2.5%。展开更多
A Large Eddy Simulation (LES) technique was applied to solve the turbulentchannel flow for Re_τ = 150 . Three types of turbulence models are employed, such as theSmagorinsky model, the Dynamic Sub-Grid Scale(SGS) mod...A Large Eddy Simulation (LES) technique was applied to solve the turbulentchannel flow for Re_τ = 150 . Three types of turbulence models are employed, such as theSmagorinsky model, the Dynamic Sub-Grid Scale(SGS) model and the Generalized Normal Stress (GNS)model. The simulated data in time series for the LES were averaged in both time and space to carryout the statistical analysis. Results of LES were compared with that of a DNS. As an application, aLES technique was used for 2D body in order to check the validation by investigating the turbulentvortical motion around the afterbody with a slant angle.展开更多
文摘Robust optimization approach for aerodynamic design has been developed and applied to supercritical wing aerodynamic design. The aerodynamic robust optimization design system consists of genetic optimization algorithm, improved back propagation (BP) neural network and deformation grid technology. In this article, the BP neural network has been improved in two major aspects to enhance the training speed and precision. Uniformity sampling is adopted to generate samples which will be used to establish surrogate model. The testing results show that the prediction precision of the improved BP neural network is reliable. On the assumption that the law of Mach number obeys normal distribution, supercritical wing configuration considering fuselage interfering of a certain aerobus has been taken as a typical example, and five design sections and twist angles have been optimized. The results show that the optimized wing, which considers robust design, has better aerodynamic characteristics. What's more, the intensity of shock wave has been reduced.
文摘The PLIC/SN method that combines the second-order volume tracking method (PLIC-VOF) with the equation of surface normal (SN) vector was recently proposed (M. Sun, “Volume Tracking of Subgrid Particles,” International Journal for Numerical Methods in Fluids, Vol. 66, No. 12, 2011, pp. 1530-1554). The method is able to track the motion of a subgrid particle, but the accuracy is not as good as expected on high resolution grids for vortical flows. In this paper, a simple unsplit multidimensional advection algorithm is coupled with the equation of SN vector. The advection algorithm is formulated as the finite volume method, so that it can be used readily for both structured and unstructured grids while maintaining the exact mass conservation. The new method improves the accuracy significantly for high resolution grids. In the well-known test of the time-resolved vortex problem of T = 2, the circular interface is resolved with an accuracy better than ever using the equation of SN vector.
文摘选择在600m^30km16个尺度上,在ArcGIS中利用常用的面积最大值法(Rule of Maximum Area,RMA)对2005年四川省1:25万土地覆被矢量数据进行栅格化,并采用两种属性精度损失评估方法:传统的常规分析方法和一种新的基于栅格单元分析方法,来对比分析在这两种评估方法下RMA栅格化的属性(这里是指面积)精度损失随尺度的变化特征。结果表明:(1)在同一尺度下采用基于栅格单元方法分析所得的研究区平均属性精度损失大于常规分析方法分析得到的平均属性精度损失,且二者之间的差异在1~10km内很明显,当栅格单元大于10km时,两种方法得到的平均属性精度损失的差值稳定,且其随尺度的变化曲线趋于平行;(2)基于栅格单元分析方法不仅能够准确地定量估计RMA栅格化的属性精度损失,而且能客观地反映属性精度损失的空间分布规律;(3)对四川省1:25万土地覆被数据进行面积最大值法(RMA)栅格化的适宜尺度域最好不要超过800m,在该尺度域内数据工作量适宜,且RMA栅格化属性精度损失小于2.5%。
文摘A Large Eddy Simulation (LES) technique was applied to solve the turbulentchannel flow for Re_τ = 150 . Three types of turbulence models are employed, such as theSmagorinsky model, the Dynamic Sub-Grid Scale(SGS) model and the Generalized Normal Stress (GNS)model. The simulated data in time series for the LES were averaged in both time and space to carryout the statistical analysis. Results of LES were compared with that of a DNS. As an application, aLES technique was used for 2D body in order to check the validation by investigating the turbulentvortical motion around the afterbody with a slant angle.