期刊文献+

基于宽度学习的智能电网数据服务器流量异常检测算法 被引量:4

An Anomaly Detection Approach on Servers Traffic in Smart Grid Based on Breadth Learning Algorithm
下载PDF
导出
摘要 电力系统的信息网络是电力行业长久持续有效运行下的重要组成部分,而智能电网中电力网与信息网耦合下的复杂网络结构给信息通讯网络安全中的流量异常检测带来了巨大的挑战。传统机器学习算法与新兴的深度学习算法在解决流量异常检测问题领域往往存在着检测准确度低、实时性差等缺陷,而结合宽度学习与质量管理图的流量异常检测流程则有着训练速度快、准确性高、实时性强的优势,在一定程度上可以满足智能电网服务器流量异常检测需求,从而达到提升电网信息安全的目的。 The information network of the power system is an important part of the long-term continuous and effective operation in power industry.The complex network structure between power network and information network in the smart grid brings great challenges to the anomaly detection on network flow in information communication network security.Traditional machine learning algorithms and newly developing deep learning algorithms often have shortcomings such as low detection accuracy and poor real-time performance in solving the problem of network flow anomaly detection,while the network anomaly detection process that combines breadth learning and control chart has the advantages of faster training speed and more accurate detecting results.These advantages can meet the needs of anomaly detection requirement in smart grid to a certain extent,thereby achieving the purpose of improving the security of information network.
作者 杨永娇 邱宇 占力超 YANG Yong-jiao;QIU Yu;ZHAN Li-chao(Information Center,Guangdong Power Grid Co.,Ltd.,Guangzhou 510080,China)
出处 《计算机与现代化》 2019年第9期77-82,89,共7页 Computer and Modernization
关键词 宽度学习 流量异常检测 人工神经网络 正常行为模型 质量管理图 智能电网 breadth learning anomaly detection of network flow artificial neural network normal behavior model control chart smart grid
  • 相关文献

参考文献15

二级参考文献121

共引文献234

同被引文献44

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部