A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative metho...A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.展开更多
It is shown that there exists Λ>0 such that, for every λ∈(0,Λ), the semilinear elliptic system: - Δ u=λu|u| q-1 +u|u| p-1 -v inΩ, - Δ v=δu-γv in Ω, u=v=0 on Ω, where Ω∈R N(N≥2) is ...It is shown that there exists Λ>0 such that, for every λ∈(0,Λ), the semilinear elliptic system: - Δ u=λu|u| q-1 +u|u| p-1 -v inΩ, - Δ v=δu-γv in Ω, u=v=0 on Ω, where Ω∈R N(N≥2) is a bounded domain with smooth boundary and 0<q<1<p,has a minimal positive solution (u λ,v λ). Moreover: u λ and v λ are strictly increasing with respect to λ.展开更多
The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution...The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.展开更多
A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear ...A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.展开更多
Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-...Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-method equations, we use a two-grid method involving a small nonlinear system on a coarse gird of size H and a linear system on a fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t + h k+1 + H 2k+2 d/2 ) (k ≥ 1), where k is the degree of the approximating space for the primary variable and d is the spatial dimension. The above estimates are useful for determining an appropriate H for the coarse grid problems.展开更多
In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of ...In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.展开更多
Diffusion-Reaction (DR) equation has been used to model a large number of phenomena in nature. It may be mentioned that a linear diffusion equation does not exhibit any traveling wave solution. But there are a vast nu...Diffusion-Reaction (DR) equation has been used to model a large number of phenomena in nature. It may be mentioned that a linear diffusion equation does not exhibit any traveling wave solution. But there are a vast number of phenomena in different branches not only of science but also of social sciences where diffusion plays an important role and the underlying dynamical system exhibits traveling wave features. In contrast to the simple diffusion when the reaction kinetics is combined with diffusion, traveling waves of chemical concentration are found to exist. This can affect a biochemical change, very much faster than straight diffusional processes. This kind of coupling results into a nonlinear (NL) DR equation. In recent years, memory effect in DR equation has been found to play an important role in many branches of science. The effect of memory enters into the dynamics of NL DR equation through its influence on the speed of the travelling wavefront. In the present work, chemotaxis equation with source term is studied in the presence of finite memory and its solution is compared with the corresponding chemotaxis equation without finite memory. Also, a comparison is made between Fisher-Burger equation and chemotaxis equation in the presence of finite memory. We have shown that nonlinear diffusion-reaction-convection equation is equivalent to chemotaxis equation.展开更多
In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are stud...In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.展开更多
In this paper, we discuss the blowing\|up of the solutions of a class of nonlinear reaction\|diffusion equations with the general (or nonlinear) boundary conditions. On some proper assumptions, we conclude that there ...In this paper, we discuss the blowing\|up of the solutions of a class of nonlinear reaction\|diffusion equations with the general (or nonlinear) boundary conditions. On some proper assumptions, we conclude that there is no global smooth solution, i.e., the solutions blow up in the finite time.展开更多
We investigate a blowup problem of a reaction-advection-diffusion equa-tion with double free boundaries and aim to use the dynamics of such a problem to describe the heat transfer and temperature change of a chemical ...We investigate a blowup problem of a reaction-advection-diffusion equa-tion with double free boundaries and aim to use the dynamics of such a problem to describe the heat transfer and temperature change of a chemical reaction in advective environment with the free boundary representing the spreading front of the heat.We study the influence of the advection on the blowup properties of the solutions and con-clude that large advection is not favorable for blowup.Moreover,we give the decay estimates of solutions and the two free boundaries converge to a finite limit for small initial data.展开更多
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
基金supported in part by NSF of China No.10571059E-Institutes of Shanghai Municipal Education Commission No.E03004+4 种基金Shanghai Priority Academic Discipline,and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education MinistrySF of Shanghai No.04JC14062the fund of Chinese Education Ministry No.20040270002the Shanghai Leading Academic Discipline Project No.T0401the fund for E-Institutes of Shanghai Municipal Education Commission No.E03004 and the fund No.04DB15 of Shanghai Municipal Education Commission
文摘A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.
文摘It is shown that there exists Λ>0 such that, for every λ∈(0,Λ), the semilinear elliptic system: - Δ u=λu|u| q-1 +u|u| p-1 -v inΩ, - Δ v=δu-γv in Ω, u=v=0 on Ω, where Ω∈R N(N≥2) is a bounded domain with smooth boundary and 0<q<1<p,has a minimal positive solution (u λ,v λ). Moreover: u λ and v λ are strictly increasing with respect to λ.
基金Supported by the National Natural Scince Foundation of China( 1 0 0 71 0 4 8) ,and the"Hundred TalentsProject"of Chinese Academy of Sciences
文摘The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.
基金supported by the Southwestern University of Finance and Economics (SWUFE) Key Subject Construction Item Funds of the 211 Project (Grant No 211D3T06)
文摘A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.
基金Supported by the National Natural Science Foundation of China Grant (No. 10771124)the Research Fund for Doctoral Program of High Education by State Education Ministry of China (No. 20060422006)+1 种基金the Program for Innovative Research Team in Ludong Universitythe Discipline Construction Fund of Ludong University
文摘Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-method equations, we use a two-grid method involving a small nonlinear system on a coarse gird of size H and a linear system on a fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t + h k+1 + H 2k+2 d/2 ) (k ≥ 1), where k is the degree of the approximating space for the primary variable and d is the spatial dimension. The above estimates are useful for determining an appropriate H for the coarse grid problems.
基金Supported by the National Natural Science Foundation of China (40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-08)Construct Project of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.
文摘Diffusion-Reaction (DR) equation has been used to model a large number of phenomena in nature. It may be mentioned that a linear diffusion equation does not exhibit any traveling wave solution. But there are a vast number of phenomena in different branches not only of science but also of social sciences where diffusion plays an important role and the underlying dynamical system exhibits traveling wave features. In contrast to the simple diffusion when the reaction kinetics is combined with diffusion, traveling waves of chemical concentration are found to exist. This can affect a biochemical change, very much faster than straight diffusional processes. This kind of coupling results into a nonlinear (NL) DR equation. In recent years, memory effect in DR equation has been found to play an important role in many branches of science. The effect of memory enters into the dynamics of NL DR equation through its influence on the speed of the travelling wavefront. In the present work, chemotaxis equation with source term is studied in the presence of finite memory and its solution is compared with the corresponding chemotaxis equation without finite memory. Also, a comparison is made between Fisher-Burger equation and chemotaxis equation in the presence of finite memory. We have shown that nonlinear diffusion-reaction-convection equation is equivalent to chemotaxis equation.
基金Supported by the NNSF of China(40676016,10471039)the National Key Project for Basics Research(2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004).
文摘In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.
文摘In this paper, we discuss the blowing\|up of the solutions of a class of nonlinear reaction\|diffusion equations with the general (or nonlinear) boundary conditions. On some proper assumptions, we conclude that there is no global smooth solution, i.e., the solutions blow up in the finite time.
基金supported by Natural Science Foundation of China(No.11901238)Natural Science Foundation of Shandong Province(No.ZR2019MA063).
文摘We investigate a blowup problem of a reaction-advection-diffusion equa-tion with double free boundaries and aim to use the dynamics of such a problem to describe the heat transfer and temperature change of a chemical reaction in advective environment with the free boundary representing the spreading front of the heat.We study the influence of the advection on the blowup properties of the solutions and con-clude that large advection is not favorable for blowup.Moreover,we give the decay estimates of solutions and the two free boundaries converge to a finite limit for small initial data.