The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid...The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.展开更多
This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,...This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-qui...Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.展开更多
We develop an exponential spline interpolation method to solve the nonlinear Schrödinger equation. The truncation error and stability analysis of the method are investigated and the method is shown to be uncon...We develop an exponential spline interpolation method to solve the nonlinear Schrödinger equation. The truncation error and stability analysis of the method are investigated and the method is shown to be unconditionally stable. The conservation quantities are computed to determine the conservation properties of the problem. We will describe the method and present numerical tests by two problems. The numerical simulations results demonstrate the well performance of the proposed method.展开更多
We apply a Fourier pseudospectral algorithm to solve a 2D nonlinear paraxial envelope-equation of laser interactions in plasmas. In this algorithm, we first use the second order Strang time-splitting method to split t...We apply a Fourier pseudospectral algorithm to solve a 2D nonlinear paraxial envelope-equation of laser interactions in plasmas. In this algorithm, we first use the second order Strang time-splitting method to split the envelope-equation into a number of equations, next we spatially discrete the filed quantity and its spatial derivatives in these equations in term of Fourier interpolation polynomials (FFT), finally we sequentially integrate the resultant equations by means of a discrete integration method in order to obtain the solution of the envelope-equation. We carry out several numerical tests to illustrate the efficiency and to determine accuracy of the algorithm. In addition, we conduct a number of numerical experiments to examine its performance. The numerical results have shown that the algorithm is highly efficient and sufficiently accurate to solve the 2D envelope-equation, furthermore, it yields an optimal performance in simulating fundamental phenomena in laser interactions in plasmas.展开更多
In this paper, we simulate the propagation of chirped pulses in silicon nanowires by solving the nonlinear Schrodinger equation (NLSE) using the split-step Fourier (SSF) method. The simulations are performed both for ...In this paper, we simulate the propagation of chirped pulses in silicon nanowires by solving the nonlinear Schrodinger equation (NLSE) using the split-step Fourier (SSF) method. The simulations are performed both for the pulse shape (time domain) and for the pulse spectrum (frequency domain), and various linear and nonlinear effects changing the shape and the spectrum of the pulse are analyzed. Owing to the high nonlinear coefficient and a very small effective-mode area, the required length for observing nonlinear effects in nanowires is much shorter than that of conventional optical fibers. The impacts of loss, nonlinear effects, second- and third-order dispersion coefficients and the chirp parameter on pulse propagation along the nanowire are investigated. The results show that the sign and the value of the chirp parameter have important role in pulse propagation so that in the anomalous dispersion regime, the compression occurs for the up- chirped pulses, whereas the broadening takes place for the down-chirped pulses. The opposite situation happens for up- and down-chirped pulses propagating in the normal dispersion regime.展开更多
We consider the defocusing mass-critical nonlinear Schr?dinger equation in the exterior domain in (). By analyzing Strichartz estimate and utilizing the inductive hypothesis method, we prove the stability for all init...We consider the defocusing mass-critical nonlinear Schr?dinger equation in the exterior domain in (). By analyzing Strichartz estimate and utilizing the inductive hypothesis method, we prove the stability for all initial data in .展开更多
Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applicat...Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.展开更多
文摘The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.
文摘This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0, (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
文摘Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.
文摘We develop an exponential spline interpolation method to solve the nonlinear Schrödinger equation. The truncation error and stability analysis of the method are investigated and the method is shown to be unconditionally stable. The conservation quantities are computed to determine the conservation properties of the problem. We will describe the method and present numerical tests by two problems. The numerical simulations results demonstrate the well performance of the proposed method.
文摘We apply a Fourier pseudospectral algorithm to solve a 2D nonlinear paraxial envelope-equation of laser interactions in plasmas. In this algorithm, we first use the second order Strang time-splitting method to split the envelope-equation into a number of equations, next we spatially discrete the filed quantity and its spatial derivatives in these equations in term of Fourier interpolation polynomials (FFT), finally we sequentially integrate the resultant equations by means of a discrete integration method in order to obtain the solution of the envelope-equation. We carry out several numerical tests to illustrate the efficiency and to determine accuracy of the algorithm. In addition, we conduct a number of numerical experiments to examine its performance. The numerical results have shown that the algorithm is highly efficient and sufficiently accurate to solve the 2D envelope-equation, furthermore, it yields an optimal performance in simulating fundamental phenomena in laser interactions in plasmas.
文摘In this paper, we simulate the propagation of chirped pulses in silicon nanowires by solving the nonlinear Schrodinger equation (NLSE) using the split-step Fourier (SSF) method. The simulations are performed both for the pulse shape (time domain) and for the pulse spectrum (frequency domain), and various linear and nonlinear effects changing the shape and the spectrum of the pulse are analyzed. Owing to the high nonlinear coefficient and a very small effective-mode area, the required length for observing nonlinear effects in nanowires is much shorter than that of conventional optical fibers. The impacts of loss, nonlinear effects, second- and third-order dispersion coefficients and the chirp parameter on pulse propagation along the nanowire are investigated. The results show that the sign and the value of the chirp parameter have important role in pulse propagation so that in the anomalous dispersion regime, the compression occurs for the up- chirped pulses, whereas the broadening takes place for the down-chirped pulses. The opposite situation happens for up- and down-chirped pulses propagating in the normal dispersion regime.
文摘We consider the defocusing mass-critical nonlinear Schr?dinger equation in the exterior domain in (). By analyzing Strichartz estimate and utilizing the inductive hypothesis method, we prove the stability for all initial data in .
文摘Pure initial value problems for important nonlinear evolution equations such as nonlinear Schrödinger equation (NLS) and the Ginzburg-Landau equation (GL) have been extensively studied. However, many applications in physics lead to mathematical models where boundary data is inhomogeneous, e.g. in radio frequency wave experiments. In this paper, we investigate the mixed initial-boundary condition problem for the nonlinear Schrödinger equation iu<sub>t</sub> = u<sub>xx</sub> – g|u|<sup>p-1</sup>u, g ∈R, p > 3 on a semi-infinite strip. The equation satisfies an initial condition and Dirichlet boundary conditions. We utilize semi-group theory to prove existence and uniqueness theorem of a strong local solution.