文摘在强烈外界噪声下或轴承故障早期发展阶段,从轴承非平稳故障信号中提取微弱冲击成分是一个难点,针对这一问题,提出了一种新的基于非凸罚正则化稀疏低秩矩阵(Non-convex penalty regularization sparse low-rank matrix,NPRSLM)的轴承微弱故障特征提取方法。该方法不依赖振动信号结构的先验知识,也无需采集大量的样本信号来训练字典,避免了传统稀疏表示设计冗余字典带来的缺乏物理意义,通用性差等缺陷。该方法的核心思想是把采集的振动信号与待提取的故障脉冲看作一维矩阵(向量),通过求解稀疏正则化的反问题得到故障脉冲信号。在建模上,通过引入非凸罚函数代替了传统最小化L1-norm融合套索算法,建立非凸罚正则化稀疏低秩矩阵模型,理论推导了所建立模型的严格凸性,并利用交替方向乘子法(Alternating direction method of multipliers,ADMM)对模型进行求解,同时讨论了模型参数对模型算法的收敛性问题、凸性与非凸性边界取值问题等。仿真算例与大型减速机圆锥滚子轴承诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的微弱冲击特征,而且改善了传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的脉冲能量大幅衰减与脉冲数目丢失问题。