期刊文献+

基于非凸稀疏正则的荧光分子断层成像 被引量:10

Fluorescence Molecular Tomography Based on Nonconvex Sparse Regularization
原文传递
导出
摘要 为提高荧光分子断层成像(FMT)的重建精度,将非凸LP(0<P<1)正则化引入到FMT重建中。为有效求解包含非凸惩罚项的优化问题,结合加权同伦算法(WHA)提出了快速迭代重建算法,将LP正则化问题转化为一系列加权的L1正则化问题求解。异质仿体上的仿真实验表明,LP(0<P<1)相较L1正则化重建在荧光目标定位和定量方面都有提高。而且通过比较6种不同的正则子,评估了参数P的选择对重建结果的影响,结果表明当1/3≤P≤1/2时,非凸正则子算法可以取得最优的重建结果。 To improve the accuracy of fluorescence molecular tomography(FMT), non-convex LP(0 〈P 〈1)regularization is introduced into 3D reconstruction. By transforming the non-convex optimization problem into a series of weighted L1 regularization problems, an iterative reconstruction scheme based on the weighted homotopy algorithm(WHA) is proposed to efficiently solve the optimization problem with non-convex LP(0〈 P 〈1)penalty. Simulations on a heterogeneous phantom demonstrate that the proposed LP(0〈 P〈 1) regularization algorithm has better performance than L1 regularization in terms of location error and fluorescent yield.Comparison results with six different regularizers assess the impact of parameter P on the reconstruction. The results demonstrate that the best reconstruction results can be obtained with 1/3 ≤ P ≤ 1/2.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第7期252-259,共8页 Acta Optica Sinica
基金 国家自然科学基金(61372046 61401264)
关键词 医用光学 非凸正则化 加权同伦算法 荧光分子断层成像 重建算法 medical optics non-convex regularization weighted homotopy algorithm fluorescence molecular tomography reconstruction algorithms
  • 相关文献

参考文献21

  • 1Ntziachristos V, Tung C H, Bremer C, et al.. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 2002, 8(7): 757-761. 被引量:1
  • 2Deliolanis N, Lasser T, Hyde D, et al.. Free-space fluorescence molecular tomography utilizing 360~ geometry projections[J]. Optics Letters, 2007, 32(4): 382-384. 被引量:1
  • 3Bai J, Xu Z. Fluorescence Molecular Tomography[M]. Berlin: Springer Berlin Heidelberg, 2013: 185-216. 被引量:1
  • 4Ale A, Ermolayev V, Herzog E, et al.. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 2012, 9(6): 615-620. 被引量:1
  • 5Zhun Xu, Jing Bai Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.Analysis of finite-element-based methods for reducing the ill-posedness in the reconstruction of fluorescence molecular tomography[J].Progress in Natural Science:Materials International,2009,19(4):501-509. 被引量:6
  • 6Ale A, Schulz R B, Sarantopoulos A, et al.. Imaging performance of a hybrid X-ray computed tomography - fluorescence molecular tomography system using priors[J]. Medical Physics, 2010, 37(5): 1976-1986. 被引量:1
  • 7Bangerth W, Joshi A. Adaptive finite element methods for the solution of inverse problems in optical tomography[J]. Inverse Problems, 2008, 24(3): 034011. 被引量:1
  • 8Donoho D L. For most large underdetermined systems of linear equations the minimal ~-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. 被引量:1
  • 9Zhang Q, Qu x, Chen D, et al.. Experimental three-dimensional biolumineseenee tomography reconstruction using the Ip regularization [J]. Advanced Seienee Letters, 2012, 16(1): 125-129. 被引量:1
  • 10Baritaux J C, Hassler K, Unser M. An efficient numerical method for general regularization in fluorescence molecular tomography [J]. IEEE Transactions on Medical Imaging, 2010, 29(4): 1075-1087. 被引量:1

二级参考文献25

  • 1Hyde D,Soubret A,Dunham J,et al.Analysis of reconstructions in full view fluorescence molecular tomography.Proc SPIE 2007;6498(3). 被引量:1
  • 2Cons A,Wang G.A finite-element-based reconstruction method for 3D fluorescence tomography.Opt Express 2005;13(24):9847-57. 被引量:1
  • 3Arridge SR,Schweiger M.Inverse methods for optical tomography.In:Information processing in medical imaging,Portland;1993.p.259-77. 被引量:1
  • 4Lv YJ,Tian J,Cong W,et al.A multilevel adaptive finite element algorithm for bioluminescence tomography.Opt Express 2006;14(18):8211-23. 被引量:1
  • 5Roy R,Thompson AB,Godavarty A,et al.Tomographic fluorescence imaging in tissue phantoms:a novel reconstruction algorithm and imaging geometry.IEEE Trans Med Imag 2005;24(2):137-54. 被引量:1
  • 6Ntziachristos V.Fluorescence molecular imaging.Annu Rev Biomed 2006;8:1-33. 被引量:1
  • 7Roy R,Godavarty A,Scvick-Muraca EM.Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media.IEEE Trans Med Imag 2003;22(7):824-36. 被引量:1
  • 8Lv YJ,Tian J,Luo J,et al.Localizing source distribution based on the adaptive finite element methods in biolumincscence tomography.Proc SPIE 2006;6318(1). 被引量:1
  • 9Arridge SR,Schweiger M,Hiraoka M,et al.A finite element approach for modeling photon transport in tissue.Med Phys 1993;20(2):299-309. 被引量:1
  • 10Shives E,Xu Y,Jiang H.Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye.opt Express 2002;10(26):1557-62. 被引量:1

共引文献5

同被引文献37

  • 1李钻芳,黄祖芳,陈荣,力超,林少俊,陈燕坪.甲状腺组织的双光子荧光成像[J].中国激光,2009,36(3):765-768. 被引量:8
  • 2贾东方,葛春风,胡智勇,王肇颖,李世忱.利用锁模光纤激光器在色散位移光纤中产生超连续谱的研究[J].光学学报,2005,25(6):746-750. 被引量:5
  • 3王小鹏,郝重阳,樊养余.基于形态学尺度空间和梯度修正的分水岭分割[J].电子与信息学报,2006,28(3):485-489. 被引量:12
  • 4Ntziachristos V. Fluorescence molecular imaging[J]. Annu Rev Biomcd Eng, 2006, 8: 1-33. 被引量:1
  • 5I)eliolanis N C, Dunham J, Wurdinger T, et al. II-viz,o imaging of murine tumors using complete-angle projection fluorescence molecular tomography[J]. Journal of Biomedical Optics, 2009, 14(3) : 030509. 被引量:1
  • 6Wang Z M, Panasyuk G Y, Markel V A, et al. Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets[J]. Optics Letters, 2005, 30(24) : 3338-3340. 被引量:1
  • 7Teresa C, Timothy R, Maximilian K, et al. Wavelet based data and solution compression for efficient image reconstruction in fluorescence diffuseoptical tomography[J]. Journal of Biomedical Optics, 2013, 18(8) : 86008. 被引量:1
  • 8Markel V A, Mital V, Schotland J C. Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition[J]. J Opt Soc Am A, 2003, 20(5) : 890-902. 被引量:1
  • 9Konecky S D, Panasyuk G Y, Lee K, et al. Imaging complex structures with diffuse light[J]. Optics Express, 2008, 16 (7) : 5048-5060. 被引量:1
  • 10Ripoll J. Hybrid Fourier-real space method for diffuse optical tomography[J]. Optics Letters, 2010, 35(5) : 688-690. 被引量:1

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部