The superheterodyne amplification of electromagnetic waves is investigated when the resonant three-wave interaction of two electromagnetic waves with the space charge wave occurs in the waveguides nitride <em>n&...The superheterodyne amplification of electromagnetic waves is investigated when the resonant three-wave interaction of two electromagnetic waves with the space charge wave occurs in the waveguides nitride <em>n</em>-GaN, <em>n</em>-InN films-dielectric. The amplification of SCW waves due to the negative differential conductivity is investigated in nitride <em>n</em>-GaN, <em>n</em>-InN films at the frequencies <em>f</em> ≤ 400 GHz in the lower part of the terahertz (THz) range. The electromagnetic waves are either in the upper part of THz range or in the optical range. The superheterodyne amplification is considered in two geometries, the collinear one in which the three interacting waves travel in the same direction and the anti-collinear geometry where the second electromagnetic wave propagates in the opposite direction. The preferences and drawbacks of each geometry are pointed out. The finite width of space charge waves leads to decrease of increments of amplification.展开更多
A super hard and wear resistant WC film is in-situ prepared on a 0.45%C steel substrate by pulsed high energy density plasma technique at ambient temperature. The microstructure and composition of the film are analyse...A super hard and wear resistant WC film is in-situ prepared on a 0.45%C steel substrate by pulsed high energy density plasma technique at ambient temperature. The microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. The hardness profile and tribological behaviour of the film are determined with nano-indenter and wear tester, respectively. The results show that the microstructure of the film was dense and uniform and mainly composed of WC and a small amount of W2 C. A wide mixing interface exists between the film and the 0.45%C steel substrate. The thickness of the film is about 2μm. The hardness and Yang's modulus of the film are very high. The film has excellent wear resistance and low friction coefficient under dry sliding wear test conditions.展开更多
For uniform tube inner coating of non-conductive thin films, the double-ended coaxial magnetron pulsed plasma (DCMPP) method was investigated. In this study, coating of TiN and TiO2 was performed. It was clearly shown...For uniform tube inner coating of non-conductive thin films, the double-ended coaxial magnetron pulsed plasma (DCMPP) method was investigated. In this study, coating of TiN and TiO2 was performed. It was clearly shown that the extended anode effect was strongly influenced by the electric resistance of the coated thin films on the inner surface of an insulator tube. Additionally, high frequency (100 kHz) was better for relatively high plasma density. On the other hand, in the case of titanium oxide deposition, negative ion productions drastically decrease the deposition rate and the shifting velocity of plasma main position for coated TiO2 films.展开更多
Hexagonal boron carbonitrogen (h-BCN) compound is synthesized from a mixture of boron powder and CNH compound prepared by pyrolysis of melamine (CaH6N6) under high temperature (1400-1500℃) and high pressure (5...Hexagonal boron carbonitrogen (h-BCN) compound is synthesized from a mixture of boron powder and CNH compound prepared by pyrolysis of melamine (CaH6N6) under high temperature (1400-1500℃) and high pressure (5.0-5.5 GPa). X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spec- troscopy are used to determine the chemical composition and bonds of the product. The results show that the product has composition of B0.18C0.64N0.16 (near BC4N) and atomic-level hybrid. X-ray diffraction analysis indicates that the powder has a hexagonal network structure. Scanning and transmission electron microscopy results suggest that h-BCN compound morphology is mainly flaky in width about 1 μm and thickness 200nm.展开更多
文摘The superheterodyne amplification of electromagnetic waves is investigated when the resonant three-wave interaction of two electromagnetic waves with the space charge wave occurs in the waveguides nitride <em>n</em>-GaN, <em>n</em>-InN films-dielectric. The amplification of SCW waves due to the negative differential conductivity is investigated in nitride <em>n</em>-GaN, <em>n</em>-InN films at the frequencies <em>f</em> ≤ 400 GHz in the lower part of the terahertz (THz) range. The electromagnetic waves are either in the upper part of THz range or in the optical range. The superheterodyne amplification is considered in two geometries, the collinear one in which the three interacting waves travel in the same direction and the anti-collinear geometry where the second electromagnetic wave propagates in the opposite direction. The preferences and drawbacks of each geometry are pointed out. The finite width of space charge waves leads to decrease of increments of amplification.
文摘A super hard and wear resistant WC film is in-situ prepared on a 0.45%C steel substrate by pulsed high energy density plasma technique at ambient temperature. The microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. The hardness profile and tribological behaviour of the film are determined with nano-indenter and wear tester, respectively. The results show that the microstructure of the film was dense and uniform and mainly composed of WC and a small amount of W2 C. A wide mixing interface exists between the film and the 0.45%C steel substrate. The thickness of the film is about 2μm. The hardness and Yang's modulus of the film are very high. The film has excellent wear resistance and low friction coefficient under dry sliding wear test conditions.
文摘For uniform tube inner coating of non-conductive thin films, the double-ended coaxial magnetron pulsed plasma (DCMPP) method was investigated. In this study, coating of TiN and TiO2 was performed. It was clearly shown that the extended anode effect was strongly influenced by the electric resistance of the coated thin films on the inner surface of an insulator tube. Additionally, high frequency (100 kHz) was better for relatively high plasma density. On the other hand, in the case of titanium oxide deposition, negative ion productions drastically decrease the deposition rate and the shifting velocity of plasma main position for coated TiO2 films.
文摘Hexagonal boron carbonitrogen (h-BCN) compound is synthesized from a mixture of boron powder and CNH compound prepared by pyrolysis of melamine (CaH6N6) under high temperature (1400-1500℃) and high pressure (5.0-5.5 GPa). X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spec- troscopy are used to determine the chemical composition and bonds of the product. The results show that the product has composition of B0.18C0.64N0.16 (near BC4N) and atomic-level hybrid. X-ray diffraction analysis indicates that the powder has a hexagonal network structure. Scanning and transmission electron microscopy results suggest that h-BCN compound morphology is mainly flaky in width about 1 μm and thickness 200nm.