Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explor...Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years, in fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological, biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions. Recent discoveries of many transporters and channels for nitrate, phosphate and potassium uptake have opened up opportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels, in addition, the functions and regulation of some important transporters and channels are particularly emphasized.展开更多
Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has...Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has been an important agronomic practice to increase crop yield. However, over-application of N fertilizers has caused pollution of N in soil, water and air. It was estimated that the nitrogen use efficiency (NUE, the total biomass or grain yield produced per unit of applied fertilizer N) in cereal crops is as low as 33% (Raun and Johnson, 1999). Therefore, improving NUE together with reducing application of N fertilizers is an important issue for environment and sustainable production of crops. This is especially important for rice, which is a staple food for half population in the world.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Rice has a large number of nitrate or peptide transporter family(NPF) genes, but the effects of most members on rice growth and development are unknown. We report that Os NPF5.16, a nitrate transporter gene with natur...Rice has a large number of nitrate or peptide transporter family(NPF) genes, but the effects of most members on rice growth and development are unknown. We report that Os NPF5.16, a nitrate transporter gene with natural variation in its promoter sequence, is essential for rice growth and yield. The promoter sequence showed various differences between indica and japonica cultivars, and higher expression of Os NPF5.16 was found in indica cultivars with higher plant weight and more tillers than japonica cultivars.Os NPF5.16 was highly expressed in roots, tiller basal parts, and leaf sheaths, and its protein was localized on the plasma membrane. In c RNA-injected Xenopus laevis oocytes, Os NPF5.16 transport of nitrate at high nitrate concentration depended on p H. Overexpression of Os NPF5.16 increased nitrate content and total nitrogen content in leaf sheath as well as biomass and tiller bud length in rice. Elevated expression of Os NPF5.16 increased rice tiller number and grain yield by regulating cytokinin levels. Inhibition of Os NPF5.16 expression showed the opposite effects. Regulating Os NPF5.16 expression has potential for improving rice grain yield.展开更多
Kernel development plays an important role in determining kernel size in maize.Here we present the cloning and characterization of a maize gene,nitrate transporter1.5(NRT1.5),which controls small kernel phenotype by p...Kernel development plays an important role in determining kernel size in maize.Here we present the cloning and characterization of a maize gene,nitrate transporter1.5(NRT1.5),which controls small kernel phenotype by playing an important role in kernel development.A novel recessive small kernel mutant miniature2-m1(mn2-m1)was isolated from self-pollinated progenies of breeding materials.The mutant spontaneously showed small kernel character arresting both embryo and endosperm development at an early stage after pollination.Utilizing 21 polymorphic SSR markers,the mn2-m1 locus was limited to a 209.9-kb interval using 9176 recessive individuals of a BC1 segregating population from mn2-m1/B73.Only one annotated gene was located in this 209.9 kb region,Zm00001 d019294,which was predicted to encode nitrate transporter1.5(NRT1.5).Allelism tests confirmed that mn2-m1 was allelic to miniature2-m2(mn2-m2)and miniature2-710 B(mn2-710 B).The mn2-m1 and mn2-m2 alleles both had nucleotide deletions in the coding region resulting in premature termination,and the mn2-710 B allele had some missence mutations.Subcellular localization showed that Miniature 2(MN2)is localized in the plasma membrane.Quantitative real-time PCR(qRT-PCR)analysis revealed that the expression of MN2 and some genes involved in the basal endosperm transfer layer(BETL)and embryo surrounding region(ESR)development were affected in mn2-m1 seeds.These results suggested that MN2 plays an important role in maize seed development.展开更多
文摘Nitrogen, phosphorous and potassium are essential nutrients for plant growth and development. However, their contents in soils are limited so that crop production needs to invest a lot for fertilizer supply. To explore the genetic potentialities of crops (or plants) for their nutrient utilization efficiency has been an important research task for many years, in fact, a number of evidences have revealed that plants, during their evolution, have developed many morphological, physiological, biochemical and molecular adaptation mechanisms for acquiring nitrate, phosphate and potassium under stress conditions. Recent discoveries of many transporters and channels for nitrate, phosphate and potassium uptake have opened up opportunities to study the molecular regulatory mechanisms for acquisition of these nutrients. This review aims to briefly discuss the genes and gene families for these transporters and channels, in addition, the functions and regulation of some important transporters and channels are particularly emphasized.
文摘Nitrogen (N) is one of most important nutrients for crop production, which makes up 1%-5% of total plant dry matter (Marschner, 2012). Due to the limited availability of N in soil, application of N fertilizers has been an important agronomic practice to increase crop yield. However, over-application of N fertilizers has caused pollution of N in soil, water and air. It was estimated that the nitrogen use efficiency (NUE, the total biomass or grain yield produced per unit of applied fertilizer N) in cereal crops is as low as 33% (Raun and Johnson, 1999). Therefore, improving NUE together with reducing application of N fertilizers is an important issue for environment and sustainable production of crops. This is especially important for rice, which is a staple food for half population in the world.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金supported by the National Key Research and Development Program(2016YFD0100700)the Wuhan Science and Technology Project(2020020601012259)+4 种基金Hubei Natural Science Foundation(2020CFB117)the National Natural Science Foundation of China(31301250)the Talent Project from Guizhou Education Department(Qian jiao he KY zi(2021)024)the Key Cultivation Project of Guizhou University(201903)the Talent Project from Thousands of Innovative and Entrepreneurial in Guizhou Province。
文摘Rice has a large number of nitrate or peptide transporter family(NPF) genes, but the effects of most members on rice growth and development are unknown. We report that Os NPF5.16, a nitrate transporter gene with natural variation in its promoter sequence, is essential for rice growth and yield. The promoter sequence showed various differences between indica and japonica cultivars, and higher expression of Os NPF5.16 was found in indica cultivars with higher plant weight and more tillers than japonica cultivars.Os NPF5.16 was highly expressed in roots, tiller basal parts, and leaf sheaths, and its protein was localized on the plasma membrane. In c RNA-injected Xenopus laevis oocytes, Os NPF5.16 transport of nitrate at high nitrate concentration depended on p H. Overexpression of Os NPF5.16 increased nitrate content and total nitrogen content in leaf sheath as well as biomass and tiller bud length in rice. Elevated expression of Os NPF5.16 increased rice tiller number and grain yield by regulating cytokinin levels. Inhibition of Os NPF5.16 expression showed the opposite effects. Regulating Os NPF5.16 expression has potential for improving rice grain yield.
基金supported by the National Key Research and Development Program of China(2017YFD0101204)the National Natural Science Foundation of China(31701443)+1 种基金the Agricultural Science and Technology Innovation Project of the Shandong Academy of Agricultural Sciences,China(CXGC2017B01)the Natural Science Foundation of Shandong Province,China(ZR2016CB52)。
文摘Kernel development plays an important role in determining kernel size in maize.Here we present the cloning and characterization of a maize gene,nitrate transporter1.5(NRT1.5),which controls small kernel phenotype by playing an important role in kernel development.A novel recessive small kernel mutant miniature2-m1(mn2-m1)was isolated from self-pollinated progenies of breeding materials.The mutant spontaneously showed small kernel character arresting both embryo and endosperm development at an early stage after pollination.Utilizing 21 polymorphic SSR markers,the mn2-m1 locus was limited to a 209.9-kb interval using 9176 recessive individuals of a BC1 segregating population from mn2-m1/B73.Only one annotated gene was located in this 209.9 kb region,Zm00001 d019294,which was predicted to encode nitrate transporter1.5(NRT1.5).Allelism tests confirmed that mn2-m1 was allelic to miniature2-m2(mn2-m2)and miniature2-710 B(mn2-710 B).The mn2-m1 and mn2-m2 alleles both had nucleotide deletions in the coding region resulting in premature termination,and the mn2-710 B allele had some missence mutations.Subcellular localization showed that Miniature 2(MN2)is localized in the plasma membrane.Quantitative real-time PCR(qRT-PCR)analysis revealed that the expression of MN2 and some genes involved in the basal endosperm transfer layer(BETL)and embryo surrounding region(ESR)development were affected in mn2-m1 seeds.These results suggested that MN2 plays an important role in maize seed development.