Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent...Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.展开更多
文摘Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.