For a ring endomorphism α, in this paper we introduce the notion of s-power- serieswise nil-Armendariz rings, which are a generalization of α-power-serieswise Armendariz rings. A number of properties of this general...For a ring endomorphism α, in this paper we introduce the notion of s-power- serieswise nil-Armendariz rings, which are a generalization of α-power-serieswise Armendariz rings. A number of properties of this generalization are established, and the extensions of α- power-serieswise nil-Armendariz rings are investigated. Which generalizes the corresponding results of nil-Armendariz rings and power-serieswise nil-Armendariz rings.展开更多
We introduce nil 3-Armendariz rings, which are generalization of 3-Armendariz rings and nil Armendaiz rings and investigate their properties. We show that a ring R is nil 3-Armendariz ring if and only if for any , Tn(...We introduce nil 3-Armendariz rings, which are generalization of 3-Armendariz rings and nil Armendaiz rings and investigate their properties. We show that a ring R is nil 3-Armendariz ring if and only if for any , Tn(R) is nil 3-Armendariz ring. Also we prove that a right Ore ring R is nil 3-Armendariz if and only if so is Q, where Q is the classical right quotient ring of R. With the help of this result, we can show that a commutative ring R is nil 3-Armendariz if and only if the total quotient ring of R is nil 3-Armendariz.展开更多
文摘For a ring endomorphism α, in this paper we introduce the notion of s-power- serieswise nil-Armendariz rings, which are a generalization of α-power-serieswise Armendariz rings. A number of properties of this generalization are established, and the extensions of α- power-serieswise nil-Armendariz rings are investigated. Which generalizes the corresponding results of nil-Armendariz rings and power-serieswise nil-Armendariz rings.
文摘We introduce nil 3-Armendariz rings, which are generalization of 3-Armendariz rings and nil Armendaiz rings and investigate their properties. We show that a ring R is nil 3-Armendariz ring if and only if for any , Tn(R) is nil 3-Armendariz ring. Also we prove that a right Ore ring R is nil 3-Armendariz if and only if so is Q, where Q is the classical right quotient ring of R. With the help of this result, we can show that a commutative ring R is nil 3-Armendariz if and only if the total quotient ring of R is nil 3-Armendariz.