The potential of three-dimensional(3D)printing technology in the fabrication of advanced polymer composites is becoming increasingly evident.This review discusses the latest research developments and applications of 3...The potential of three-dimensional(3D)printing technology in the fabrication of advanced polymer composites is becoming increasingly evident.This review discusses the latest research developments and applications of 3D printing in polymer composites.First,it focuses on the optimization of 3D printing technology,that is,by upgrading the equipment or components or adjusting the printing parameters,to make them more adaptable to the processing characteristics of polymer composites and to improve the comprehensive performance of the products.Second,it focuses on the 3D printable novel consumables for polymer composites,which mainly include the new printing filaments,printing inks,photosensitive resins,and printing powders,introducing the unique properties of the new consumables and different ways to apply them to 3D printing.Finally,the applications of 3D printing technology in the preparation of functional polymer composites(such as thermal conductivity,electromagnetic interference shielding,biomedicine,self-healing,and environmental responsiveness)are explored,with a focus on the distribution of the functional fillers and the influence of the topological shapes on the properties and functional characteristics of the 3D printed products.The aim of this review is to deepen the understanding of the convergence between 3D printing technology and polymer composites and to anticipate future trends and applications.展开更多
new coordination polymer {[Zn(CF3COO)2(C5H5ON)]·H2O}n was synthesized based on the reaction of zinc(Ⅱ) trifluoroacetate and 3-hydroxypyridine(C5H5ON) in methanol medium for the first time. The structure of the c...new coordination polymer {[Zn(CF3COO)2(C5H5ON)]·H2O}n was synthesized based on the reaction of zinc(Ⅱ) trifluoroacetate and 3-hydroxypyridine(C5H5ON) in methanol medium for the first time. The structure of the coordination polymer was confirmed by IR, 1H NMR, elemental analysis and thermal analysis. The crystal structure of the coordination polymer was also determined by X-ray single crystal diffraction. The crystal belongs to monoclinic system with space group P21/m, and crystallographic data of the coordination polymer are: a= 0.863 1(4) nm, b=0.717 7(3) nm, c=1.116 4(5) nm, α=γ=90°, β=107.542(6)°, V=0.659 4(5) nm3; Dc=2.037 g·cm-3; Z=2; F(000)=400; μ=1.969 mm-1. Zinc(Ⅱ) atom lies at the center of an octahedron formed by the coordination of zinc atom and six O atoms which come from four different trifluoroacetate ions and two different 3-hydroxypyridine molecules where each trifluoroacetate ion and 3-hydroxypyridine are coordinated to two different zinc ions to form coordination polymer. CCDC: 253909.展开更多
A new 1,3,4 thiadiazole-derivative ligand 2,5-(s-acetic acid) dimercapto-1,3,4 thiadiazole (H2ADTZ) and its one-dimensional manganese polymer Mn(ADTZ)·4H2O had been synthesized and structurally characterized by X...A new 1,3,4 thiadiazole-derivative ligand 2,5-(s-acetic acid) dimercapto-1,3,4 thiadiazole (H2ADTZ) and its one-dimensional manganese polymer Mn(ADTZ)·4H2O had been synthesized and structurally characterized by X-ray single crystal diffraction in this paper. The Mn(Ⅱ) ion is coordinated with a distorted octahedron by two oxygen atoms from neighboring two deprotonated ligands ADTZ2- and other four oxygen atoms from four coordinated water molecules. The structural feature of the title compound is the formation of one-dimensional manganese chains polymer through the bridging of dioxygen O-O units. In the solid state structure of the complex, one-dimensional manganese chains are joined together by the weak intermolecular hydrogen bonds and vander Waals interactions forming a two-dimensional supramolecular compound. Furthermore, the UV spectra and electro-chemical properties of the title compound were also investigated. CCDC: 260532.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
Due to the structure characteristics of huge macromolecular size and the very low motion feature of the polymer chain which is very difficult to arrange regularly their long chain into the three dimensional space,thus...Due to the structure characteristics of huge macromolecular size and the very low motion feature of the polymer chain which is very difficult to arrange regularly their long chain into the three dimensional space,thus the polymer will incompletely crystallize except for the macroscopic single crystal of polydiacetylene polymerized by means of solid state crystalline polymerization.展开更多
基金Key Research and Development Projects of Shaanxi Province,Grant/Award Number:2023-YBGY-461Natural Science Foundation of Chongqing,Grant/Award Number:2023NSCQ-MSX2547+1 种基金Innovation Capability Support Program of Shaanxi,Grant/Award Number:2024RSCXTD-57Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars。
文摘The potential of three-dimensional(3D)printing technology in the fabrication of advanced polymer composites is becoming increasingly evident.This review discusses the latest research developments and applications of 3D printing in polymer composites.First,it focuses on the optimization of 3D printing technology,that is,by upgrading the equipment or components or adjusting the printing parameters,to make them more adaptable to the processing characteristics of polymer composites and to improve the comprehensive performance of the products.Second,it focuses on the 3D printable novel consumables for polymer composites,which mainly include the new printing filaments,printing inks,photosensitive resins,and printing powders,introducing the unique properties of the new consumables and different ways to apply them to 3D printing.Finally,the applications of 3D printing technology in the preparation of functional polymer composites(such as thermal conductivity,electromagnetic interference shielding,biomedicine,self-healing,and environmental responsiveness)are explored,with a focus on the distribution of the functional fillers and the influence of the topological shapes on the properties and functional characteristics of the 3D printed products.The aim of this review is to deepen the understanding of the convergence between 3D printing technology and polymer composites and to anticipate future trends and applications.
文摘new coordination polymer {[Zn(CF3COO)2(C5H5ON)]·H2O}n was synthesized based on the reaction of zinc(Ⅱ) trifluoroacetate and 3-hydroxypyridine(C5H5ON) in methanol medium for the first time. The structure of the coordination polymer was confirmed by IR, 1H NMR, elemental analysis and thermal analysis. The crystal structure of the coordination polymer was also determined by X-ray single crystal diffraction. The crystal belongs to monoclinic system with space group P21/m, and crystallographic data of the coordination polymer are: a= 0.863 1(4) nm, b=0.717 7(3) nm, c=1.116 4(5) nm, α=γ=90°, β=107.542(6)°, V=0.659 4(5) nm3; Dc=2.037 g·cm-3; Z=2; F(000)=400; μ=1.969 mm-1. Zinc(Ⅱ) atom lies at the center of an octahedron formed by the coordination of zinc atom and six O atoms which come from four different trifluoroacetate ions and two different 3-hydroxypyridine molecules where each trifluoroacetate ion and 3-hydroxypyridine are coordinated to two different zinc ions to form coordination polymer. CCDC: 253909.
文摘A new 1,3,4 thiadiazole-derivative ligand 2,5-(s-acetic acid) dimercapto-1,3,4 thiadiazole (H2ADTZ) and its one-dimensional manganese polymer Mn(ADTZ)·4H2O had been synthesized and structurally characterized by X-ray single crystal diffraction in this paper. The Mn(Ⅱ) ion is coordinated with a distorted octahedron by two oxygen atoms from neighboring two deprotonated ligands ADTZ2- and other four oxygen atoms from four coordinated water molecules. The structural feature of the title compound is the formation of one-dimensional manganese chains polymer through the bridging of dioxygen O-O units. In the solid state structure of the complex, one-dimensional manganese chains are joined together by the weak intermolecular hydrogen bonds and vander Waals interactions forming a two-dimensional supramolecular compound. Furthermore, the UV spectra and electro-chemical properties of the title compound were also investigated. CCDC: 260532.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
文摘Due to the structure characteristics of huge macromolecular size and the very low motion feature of the polymer chain which is very difficult to arrange regularly their long chain into the three dimensional space,thus the polymer will incompletely crystallize except for the macroscopic single crystal of polydiacetylene polymerized by means of solid state crystalline polymerization.