Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr...Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.展开更多
Background Hirayama disease is a juvenile muscular atrophy of the distal upper extremities and affects mainly young males. The present study aimed to investigate the neuroelectrophysiological characteristics of Hiraya...Background Hirayama disease is a juvenile muscular atrophy of the distal upper extremities and affects mainly young males. The present study aimed to investigate the neuroelectrophysiological characteristics of Hirayama disease. Methods We retrospectively analyzed the neural conduction velocity (NCV) parameters and needle-electrode electromyograms (EMG) of 14 patients with Hirayama disease. According to the clinical features of the patients, NCV was performed on affected upper-limb including median nerves and ulnar nerves, while EMG was selectively performed on upper and lower extremities, sternocleidomast and thoracic paraspinal muscles. Results The median nerves of all affected upper limbs of patients with Hirayama disease had normal conduction velocities and compound motor action potentials (CMAPs). The ulnar nerves of all affected upper limbs also had normal conduction velocities. Of the 16 measured ulnar nerves of the affected upper limbs, eight had normal CMAPS, while the other eight showed CMAPs below the normal value by 〉20%. All patients had neurogenic injury on the affected side in muscles innervated by anterior horn cells at the lower cervical region (C7-8, T1). Four patients had unilateral upper-limb muscle neurogenic injury on the affected side. Seven patients had bilateral upper-limb muscle neurogenic injury, while only two patients experienced bilateral upper-limb muscle atrophy / weakness. The other three patients showed extensive neurogenic injury (unilateral upper-limb muscle atrophy/weakness in one patient, bilateral symptoms in the other two patients). Conclusions Electromyographic examination showed that the majority of Hirayama disease patients exhibited characteristic segmental injury in the anterior horn of the lower cervical region, while a few patients exhibited extensive neurogenic injury. These data suggest that the actual influence of Hirayama disease may be more extensive than indicated by the clinical presentations.展开更多
BACKGROUND: Postoperative cognitive dysfunction (POCD) is an adverse condition characterized by declined cognitive functions following surgeries and anesthesia. POCD has been associated with increased hospital stay an...BACKGROUND: Postoperative cognitive dysfunction (POCD) is an adverse condition characterized by declined cognitive functions following surgeries and anesthesia. POCD has been associated with increased hospital stay and mortality. There are histological similarities to Alzheimer’s disease. Most early studies were conducted in patients receiving cardiac surgery. Since there is no information about POCD in liver transplant recipients, we measured the incidence of POCD in patients after liver transplantation and examined the correlation between neurological dysfunction and biological markers of dementia- based diseases. METHODS: We studied 25 patients who had a liver transplan- tation between July 2008 and February 2009. Patients with prior encephalopathy or risk factors associated with the development of POCD were excluded from the study. Five validated neuropsychiatric tests were used for diagnosis. The diagnosis was based on one standard deviation decline in two of the five neuropsychiatric tests. The correlation between patient variables and the development of POCD was examined. Serum levels of beta-amyloid and C-reactive protein were measured by standard ELISA and compared between patients with and without POCD. RESULTS: POCD was present in 11 (44%) of the 25 patients. Patients with POCD had significantly higher MELD scores, were more often Child-Pugh class C and received more blood transfusion during surgery. The serum beta-amyloid protein and C-reactive protein concentrations were significantly increased at 24 hours after surgery in the POCD group.CONCLUSIONS: The incidence of POCD in our group of liver transplant patients was greater than that reported in other surgical patients. The increase in the serum biomarkers of dementia in the POCD patients supports the hypothesis that chronic cognitive defects are due to a process similar to that seen in Alzheimer’s disease.展开更多
Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we u...Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we used transdermal enhancers to deliverAngong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg) were administered to theDazhui (DU14), Qihai(RN6) andMingmen (DU4) of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application ofAngong Niuhuangstickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efifcacy similar to interventions by electroacupuncture at Dazhui (DU14),Qihai (RN6) andMingmen (DU4). Our experimental ifndings indicate that point application withAngong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efifcacy to acupuncture.展开更多
The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues,...The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia.展开更多
Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a ...Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.展开更多
Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic ...Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.展开更多
Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotectiv...Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotective effects of erythropoietin on spinal cord injury has not been examined.In this study,we established rat models of spinal cord injury by modified Allen’s method and intraperitoneally administered 1000 and 5000 IU/kg erythropoietin once a week for 2 successive weeks.Both low and high doses of erythropoietin promoted recovery of hindlimb function,and the high dose of erythropoietin led to better outcome.High dose of erythropoietin exhibited a stronger suppressive effect on ferroptosis relative to the low dose of erythropoietin.The effects of erythropoietin on inhibiting ferroptosis-related protein expression and restoring mitochondrial morphology were similar to those of Fer-1(a ferroptosis suppressor),and the effects of erythropoietin were largely diminished by RSL3(ferroptosis activator).In vitro experiments showed that erythropoietin inhibited RSL3-induced ferroptosis in PC12 cells and increased the expression of xCT and Gpx4.This suggests that xCT and Gpx4 are involved in the neuroprotective effects of erythropoietin on spinal cord injury.Our findings reveal the underlying anti-ferroptosis role of erythropoietin and provide a potential therapeutic strategy for treating spinal cord injury.展开更多
基金supported by the National Natural Science Foundation of China,No.81173355
文摘Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves.
文摘Background Hirayama disease is a juvenile muscular atrophy of the distal upper extremities and affects mainly young males. The present study aimed to investigate the neuroelectrophysiological characteristics of Hirayama disease. Methods We retrospectively analyzed the neural conduction velocity (NCV) parameters and needle-electrode electromyograms (EMG) of 14 patients with Hirayama disease. According to the clinical features of the patients, NCV was performed on affected upper-limb including median nerves and ulnar nerves, while EMG was selectively performed on upper and lower extremities, sternocleidomast and thoracic paraspinal muscles. Results The median nerves of all affected upper limbs of patients with Hirayama disease had normal conduction velocities and compound motor action potentials (CMAPs). The ulnar nerves of all affected upper limbs also had normal conduction velocities. Of the 16 measured ulnar nerves of the affected upper limbs, eight had normal CMAPS, while the other eight showed CMAPs below the normal value by 〉20%. All patients had neurogenic injury on the affected side in muscles innervated by anterior horn cells at the lower cervical region (C7-8, T1). Four patients had unilateral upper-limb muscle neurogenic injury on the affected side. Seven patients had bilateral upper-limb muscle neurogenic injury, while only two patients experienced bilateral upper-limb muscle atrophy / weakness. The other three patients showed extensive neurogenic injury (unilateral upper-limb muscle atrophy/weakness in one patient, bilateral symptoms in the other two patients). Conclusions Electromyographic examination showed that the majority of Hirayama disease patients exhibited characteristic segmental injury in the anterior horn of the lower cervical region, while a few patients exhibited extensive neurogenic injury. These data suggest that the actual influence of Hirayama disease may be more extensive than indicated by the clinical presentations.
文摘BACKGROUND: Postoperative cognitive dysfunction (POCD) is an adverse condition characterized by declined cognitive functions following surgeries and anesthesia. POCD has been associated with increased hospital stay and mortality. There are histological similarities to Alzheimer’s disease. Most early studies were conducted in patients receiving cardiac surgery. Since there is no information about POCD in liver transplant recipients, we measured the incidence of POCD in patients after liver transplantation and examined the correlation between neurological dysfunction and biological markers of dementia- based diseases. METHODS: We studied 25 patients who had a liver transplan- tation between July 2008 and February 2009. Patients with prior encephalopathy or risk factors associated with the development of POCD were excluded from the study. Five validated neuropsychiatric tests were used for diagnosis. The diagnosis was based on one standard deviation decline in two of the five neuropsychiatric tests. The correlation between patient variables and the development of POCD was examined. Serum levels of beta-amyloid and C-reactive protein were measured by standard ELISA and compared between patients with and without POCD. RESULTS: POCD was present in 11 (44%) of the 25 patients. Patients with POCD had significantly higher MELD scores, were more often Child-Pugh class C and received more blood transfusion during surgery. The serum beta-amyloid protein and C-reactive protein concentrations were significantly increased at 24 hours after surgery in the POCD group.CONCLUSIONS: The incidence of POCD in our group of liver transplant patients was greater than that reported in other surgical patients. The increase in the serum biomarkers of dementia in the POCD patients supports the hypothesis that chronic cognitive defects are due to a process similar to that seen in Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China,No.81403458a grant from Cultivation Project Foundation for Youth Technological Talents of Southern Medical University,No.B1012015
文摘Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological func-tions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris andRealgar), we used transdermal enhancers to deliverAngong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg) were administered to theDazhui (DU14), Qihai(RN6) andMingmen (DU4) of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application ofAngong Niuhuangstickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efifcacy similar to interventions by electroacupuncture at Dazhui (DU14),Qihai (RN6) andMingmen (DU4). Our experimental ifndings indicate that point application withAngong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efifcacy to acupuncture.
基金supported by the Combined pecific Foundation of Department of Science and Technology of Yunnan Province and Kunming Medical University,No.2008CD037
文摘The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia.
基金supported by grants from the National Natural Science Foundation of China, Nos. 81930031 (to JNZ), 81720108015 (to JNZ), 81901525 (to SZ), 82101440 (to DDS), 81801234 (to YZ) and 82071389 (to GLY)the Natural Science Foundation of Tianjin, Nos. 20JCQNJC01270 (to JWW), 20JCQNJC00460 (to GLY), 18JCQNJC81000 (to HTR)+4 种基金Scientific Research Project of Tianjin Education Commission (Natural Science), No. 2018KJ052 (to ZWZ)Tianjin Health and Health Committee Science and Technology Project, No. QN20015 (to JWW)the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, No. 2016YD02 (to YW)Tianjin Key Science and Technology Projects of Innovative Drugs and Medical Devices, No. 19ZXYXSY00070 (to YW)the Clinical Research Fundation of Tianjin Medical University, No. 2018kylc002 (to YW)
文摘Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.
基金supported by the President Foundation of Nanfang Hospital,Southern Medical University,No.2016Z003(50107021)(to JZF).
文摘Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
基金supported by the National Natural Science Foundation of China,Nos.81871785 and 81672161(both to ZSY)。
文摘Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotective effects of erythropoietin on spinal cord injury has not been examined.In this study,we established rat models of spinal cord injury by modified Allen’s method and intraperitoneally administered 1000 and 5000 IU/kg erythropoietin once a week for 2 successive weeks.Both low and high doses of erythropoietin promoted recovery of hindlimb function,and the high dose of erythropoietin led to better outcome.High dose of erythropoietin exhibited a stronger suppressive effect on ferroptosis relative to the low dose of erythropoietin.The effects of erythropoietin on inhibiting ferroptosis-related protein expression and restoring mitochondrial morphology were similar to those of Fer-1(a ferroptosis suppressor),and the effects of erythropoietin were largely diminished by RSL3(ferroptosis activator).In vitro experiments showed that erythropoietin inhibited RSL3-induced ferroptosis in PC12 cells and increased the expression of xCT and Gpx4.This suggests that xCT and Gpx4 are involved in the neuroprotective effects of erythropoietin on spinal cord injury.Our findings reveal the underlying anti-ferroptosis role of erythropoietin and provide a potential therapeutic strategy for treating spinal cord injury.