现有的TCP协议采用丢包事件、拥塞反馈信息或往返时延等信息启动拥塞控制,而这些基于单个数据包信息的方法进行丢包区分的能力较弱,使得有线/无线混合网络中的非拥塞丢包影响了TCP的拥塞控制行为.本文提出了一种新的TCP协议,PceReno(Pro...现有的TCP协议采用丢包事件、拥塞反馈信息或往返时延等信息启动拥塞控制,而这些基于单个数据包信息的方法进行丢包区分的能力较弱,使得有线/无线混合网络中的非拥塞丢包影响了TCP的拥塞控制行为.本文提出了一种新的TCP协议,PceReno(Probability of Congestion or Error),它通过对最近一段数据的拥塞概率预测来决定如何响应当前丢包事件,从而避免盲目的启动拥塞控制.这种先应式拥塞感知和后应式拥塞响应相结合的拥塞控制方法不需要增加额外的开销,完全依赖于原有的拥塞控制.实验结果表明PceReno能够较好地对抗随机错误,有效提高TCP在混合网络中的吞吐量.展开更多
This paper analyzes fault-tolerance over the entire design life of a class of multiple-hop wireless networks, where cooperative transmission schemes are used. The networks are subject to both node failure and random c...This paper analyzes fault-tolerance over the entire design life of a class of multiple-hop wireless networks, where cooperative transmission schemes are used. The networks are subject to both node failure and random channel fading. A node lifetime distribution is modeled with an increasing failure rate, where the node power consumption level enters the parameters of the distribution. A method for assessing both link and network reliabilities projected at the network's design life is developed. Link reliability is enhanced through use of redundant nodes. The number of redundant nodes is restricted by the cooperative transmission scheme used. The link reliability is then used to establish a re-transmission control policy that minimizes an expected cost involving power, bandwidth expenditures, and packet loss. The benefit and cost of feedback in network operations are examined. The results of a simulation study under specific node processing times are presented. The study quantifies the effect of loop closure frequency, acknowledgment deadline, and nodes' storage capacity on the performance of the network in terms of network lifetime, packet loss rate, and false alarm rate. The study concludes that in a network where energy is severely constrained, feedback must be applied judiciously.展开更多
A dynamic network Qo S control mechanism was proposed based on traffic prediction. It first predicts network traffic flow and then dynamically distributes network resources, which makes full use of network flow self-s...A dynamic network Qo S control mechanism was proposed based on traffic prediction. It first predicts network traffic flow and then dynamically distributes network resources, which makes full use of network flow self-similarity and chaos. So it can meet changing network needs very well. The simulation results show that the dynamic Qo S control mechanism based on prediction has better network performance than that based on measurement.展开更多
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
文摘现有的TCP协议采用丢包事件、拥塞反馈信息或往返时延等信息启动拥塞控制,而这些基于单个数据包信息的方法进行丢包区分的能力较弱,使得有线/无线混合网络中的非拥塞丢包影响了TCP的拥塞控制行为.本文提出了一种新的TCP协议,PceReno(Probability of Congestion or Error),它通过对最近一段数据的拥塞概率预测来决定如何响应当前丢包事件,从而避免盲目的启动拥塞控制.这种先应式拥塞感知和后应式拥塞响应相结合的拥塞控制方法不需要增加额外的开销,完全依赖于原有的拥塞控制.实验结果表明PceReno能够较好地对抗随机错误,有效提高TCP在混合网络中的吞吐量.
基金This work was partly supported by the US AFOSR (No. FA9550-06-0456 and FA9550-06-10249).
文摘This paper analyzes fault-tolerance over the entire design life of a class of multiple-hop wireless networks, where cooperative transmission schemes are used. The networks are subject to both node failure and random channel fading. A node lifetime distribution is modeled with an increasing failure rate, where the node power consumption level enters the parameters of the distribution. A method for assessing both link and network reliabilities projected at the network's design life is developed. Link reliability is enhanced through use of redundant nodes. The number of redundant nodes is restricted by the cooperative transmission scheme used. The link reliability is then used to establish a re-transmission control policy that minimizes an expected cost involving power, bandwidth expenditures, and packet loss. The benefit and cost of feedback in network operations are examined. The results of a simulation study under specific node processing times are presented. The study quantifies the effect of loop closure frequency, acknowledgment deadline, and nodes' storage capacity on the performance of the network in terms of network lifetime, packet loss rate, and false alarm rate. The study concludes that in a network where energy is severely constrained, feedback must be applied judiciously.
基金Funded by the National Natural Science Foundation of China(No.41301084)the Scientific Research Project of Hunan Province Education Department,China(No.13C713)the Natural Science Foundation of Hunan Province,China(No.13JJ6075)
文摘A dynamic network Qo S control mechanism was proposed based on traffic prediction. It first predicts network traffic flow and then dynamically distributes network resources, which makes full use of network flow self-similarity and chaos. So it can meet changing network needs very well. The simulation results show that the dynamic Qo S control mechanism based on prediction has better network performance than that based on measurement.