A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as...A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings(0.2%, 0.6%, 1.0% and3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black(NBB) in water under simulated solar light irradiation. Higher degradation efficiency(95.7%) was recorded for the MWCNT/Gd,N,S-Ti O2(0.6% Gd)nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd,MWCNTs, N, S and Ti O2. Total organic carbon(TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black(78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-Ti O2(0.6% Gd) was fairly stable and could be re-used for five times,reaching a maximum degradation efficiency of 91.8% after the five cycles.展开更多
The high melting point and strong chemical bonding of NbB_(2)pose a great challenge to the preparation of high-density nanostructured NbB_(2)composite coating.Herein,we report a novel,simple,and efficient method to fa...The high melting point and strong chemical bonding of NbB_(2)pose a great challenge to the preparation of high-density nanostructured NbB_(2)composite coating.Herein,we report a novel,simple,and efficient method to fabricate in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating by plasma spraying Nb_(2)O_(5)–B_(4)C–Al composite powder,aiming at realizing the higher densification and ultra-fine microstructure of NbB_(2)composite coating.The microstructure and properties of in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating were studied comparatively with ex-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating(plasma spraying NbB_(2)–NbC–Al_(2)O_(3)composite powder).The reaction mechanism of Nb_(2)O_(5)–B_(4)C–Al composite powder in plasma jet was analyzed in detail.The results showed that the in-situ nanostructured NbB_(2)–NbC–Al_(2)O_(3)composite coating presented a lower porosity and superior performance including higher microhardness,toughness and wear resistance compared to the plasma sprayed ex-situ NbB_(2)–NbC–Al_(2)O_(3)coating and other boride composite coatings.Densification of the in-situ NbB_(2)–NbC–Al_(2)O_(3)coating was attributed to the low melting point of Nb_(2)O_(5)–B_(4)C–Al composite powder and the exothermic effect of in-situ reaction.The superior performance was ascribed to the density improvement and the strengthening and toughening effect of the nanosized phases.The in-situ reaction path could be expressed as:Nb_(2)O_(5)+Al®Nb+Al_(2)O_(3),and Nb+B_(4)C®NbB_(2)+NbC.展开更多
基金Funding from the University of Johannesburg and DST-NRF Centre of Excellence in Strong Materials is highly appreciated
文摘A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings(0.2%, 0.6%, 1.0% and3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black(NBB) in water under simulated solar light irradiation. Higher degradation efficiency(95.7%) was recorded for the MWCNT/Gd,N,S-Ti O2(0.6% Gd)nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd,MWCNTs, N, S and Ti O2. Total organic carbon(TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black(78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-Ti O2(0.6% Gd) was fairly stable and could be re-used for five times,reaching a maximum degradation efficiency of 91.8% after the five cycles.
基金The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China(No.52072110)the Natural Science Foundation of Hebei Province(No.E2018202034).
文摘The high melting point and strong chemical bonding of NbB_(2)pose a great challenge to the preparation of high-density nanostructured NbB_(2)composite coating.Herein,we report a novel,simple,and efficient method to fabricate in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating by plasma spraying Nb_(2)O_(5)–B_(4)C–Al composite powder,aiming at realizing the higher densification and ultra-fine microstructure of NbB_(2)composite coating.The microstructure and properties of in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating were studied comparatively with ex-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating(plasma spraying NbB_(2)–NbC–Al_(2)O_(3)composite powder).The reaction mechanism of Nb_(2)O_(5)–B_(4)C–Al composite powder in plasma jet was analyzed in detail.The results showed that the in-situ nanostructured NbB_(2)–NbC–Al_(2)O_(3)composite coating presented a lower porosity and superior performance including higher microhardness,toughness and wear resistance compared to the plasma sprayed ex-situ NbB_(2)–NbC–Al_(2)O_(3)coating and other boride composite coatings.Densification of the in-situ NbB_(2)–NbC–Al_(2)O_(3)coating was attributed to the low melting point of Nb_(2)O_(5)–B_(4)C–Al composite powder and the exothermic effect of in-situ reaction.The superior performance was ascribed to the density improvement and the strengthening and toughening effect of the nanosized phases.The in-situ reaction path could be expressed as:Nb_(2)O_(5)+Al®Nb+Al_(2)O_(3),and Nb+B_(4)C®NbB_(2)+NbC.