Text, as one of the most influential inventions of humanity, has played an important role in human life, so far from ancient times. The rich and precise information embod- ied in text is very useful in a wide range of...Text, as one of the most influential inventions of humanity, has played an important role in human life, so far from ancient times. The rich and precise information embod- ied in text is very useful in a wide range of vision-based ap- plications, therefore text detection and recognition in natu- ral scenes have become important and active research topics in computer vision and document analysis. Especially in re- cent years, the community has seen a surge of research efforts and substantial progresses in these fields, though a variety of challenges (e.g. noise, blur, distortion, occlusion and varia- tion) still remain. The purposes of this survey are three-fold: 1) introduce up-to-date works, 2) identify state-of-the-art al- gorithms, and 3) predict potential research directions in the future. Moreover, this paper provides comprehensive links to publicly available resources, including benchmark datasets, source codes, and online demos. In summary, this literature review can serve as a good reference for researchers in the areas of scene text detection and recognition.展开更多
In order to improve the image segmentation performance of cotton leaves in natural environment, an automatic segmentation model of diseased leaf with active gradient and local information is proposed. Firstly, a segme...In order to improve the image segmentation performance of cotton leaves in natural environment, an automatic segmentation model of diseased leaf with active gradient and local information is proposed. Firstly, a segmented monotone decreasing edge composite function is proposed to accelerate the evolution of the level set curve in the gradient smooth region. Secondly, canny edge detection operator gradient is introduced into the model as the global information. In the process of the evolution of the level set function, the guidance information of the energy function is used to guide the curve evolution according to the local information of the image, and the smooth contour curve is obtained. And the main direction of the evolution of the level set curve is controlled according to the global gradient information, which effectively overcomes the local minima in the process of the evolution of the level set function. Finally, the Heaviside function is introduced into the energy function to smooth the contours of the motion and to increase the penalty function Φ(x) to calibrate the deviation of the level set function so that the level set is smooth and closed. The results showed that the model of cotton leaf edge profile curve could be obtained in the model of cotton leaf covered by bare soil, straw mulching and plastic film mulching, and the ideal edge of the ROI could be realized when the light was not uniform. In the complex background, the model can segment the leaves of the cotton with uneven illumination, shadow and weed background, and it is better to realize the ideal extraction of the edge of the blade. Compared with the Geodesic Active Contour(GAC) algorithm, Chan-Vese(C-V) algorithm and Local Binary Fitting(LBF) algorithm, it is found that the model has the advantages of segmentation accuracy and running time when processing seven kinds of cotton disease leaves images, including uneven lighting, leaf disease spot blur, adhesive diseased leaf, shadow, complex background, unclear diseased leaf edges, and sta展开更多
Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to sol...Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of image perception. Although the photorealistic CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A pert of features are derived from fractal dimension to capture the difference in color perception between CG images and natural images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.展开更多
文摘Text, as one of the most influential inventions of humanity, has played an important role in human life, so far from ancient times. The rich and precise information embod- ied in text is very useful in a wide range of vision-based ap- plications, therefore text detection and recognition in natu- ral scenes have become important and active research topics in computer vision and document analysis. Especially in re- cent years, the community has seen a surge of research efforts and substantial progresses in these fields, though a variety of challenges (e.g. noise, blur, distortion, occlusion and varia- tion) still remain. The purposes of this survey are three-fold: 1) introduce up-to-date works, 2) identify state-of-the-art al- gorithms, and 3) predict potential research directions in the future. Moreover, this paper provides comprehensive links to publicly available resources, including benchmark datasets, source codes, and online demos. In summary, this literature review can serve as a good reference for researchers in the areas of scene text detection and recognition.
基金supported by the National Natural Science Foundation of China (31501229)the Chinese Academy of Agricultural Sciences Innovation Project (CAAS-ASTIP2017-AII)the Special Research Funds for Basic Scientific Research in Central Public Welfare Research Institutes, China (JBYW-AII-2017-05)
文摘In order to improve the image segmentation performance of cotton leaves in natural environment, an automatic segmentation model of diseased leaf with active gradient and local information is proposed. Firstly, a segmented monotone decreasing edge composite function is proposed to accelerate the evolution of the level set curve in the gradient smooth region. Secondly, canny edge detection operator gradient is introduced into the model as the global information. In the process of the evolution of the level set function, the guidance information of the energy function is used to guide the curve evolution according to the local information of the image, and the smooth contour curve is obtained. And the main direction of the evolution of the level set curve is controlled according to the global gradient information, which effectively overcomes the local minima in the process of the evolution of the level set function. Finally, the Heaviside function is introduced into the energy function to smooth the contours of the motion and to increase the penalty function Φ(x) to calibrate the deviation of the level set function so that the level set is smooth and closed. The results showed that the model of cotton leaf edge profile curve could be obtained in the model of cotton leaf covered by bare soil, straw mulching and plastic film mulching, and the ideal edge of the ROI could be realized when the light was not uniform. In the complex background, the model can segment the leaves of the cotton with uneven illumination, shadow and weed background, and it is better to realize the ideal extraction of the edge of the blade. Compared with the Geodesic Active Contour(GAC) algorithm, Chan-Vese(C-V) algorithm and Local Binary Fitting(LBF) algorithm, it is found that the model has the advantages of segmentation accuracy and running time when processing seven kinds of cotton disease leaves images, including uneven lighting, leaf disease spot blur, adhesive diseased leaf, shadow, complex background, unclear diseased leaf edges, and sta
基金Supported by the National Natural Science Foundation of China (Grant Nos.60633030 and 90604008)National Basic Rearch Program of China (Grant No.2006CB303104)
文摘Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of image perception. Although the photorealistic CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A pert of features are derived from fractal dimension to capture the difference in color perception between CG images and natural images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.