摘要
Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of image perception. Although the photorealistic CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A pert of features are derived from fractal dimension to capture the difference in color perception between CG images and natural images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.
Rendering technology in computer graphics (CG) is now capable of producing highly photorealistic images, giving rise to the problem of how to identify CG images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of image perception. Although the photorealistic CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A pert of features are derived from fractal dimension to capture the difference in color perception between CG images and natural images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.
基金
Supported by the National Natural Science Foundation of China (Grant Nos.60633030 and 90604008)
National Basic Rearch Program of China (Grant No.2006CB303104)