A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of...A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.展开更多
We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on t...We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on the linear optical elements,say the partial parity check gate and the second protocol uses the quantum nondemolition measurement to construct the complete parity check gate.Both protocols can achieve the concentration task.These protocols have several advantages.First,they can obtain a maximally entangled W state only with the help of some single photons,which greatly reduces the number of entanglement resources.Second,in the first protocol,only linear optical elements are required,which is feasible with current techniques.Third,the second protocol can be repeated to perform the concentration step and obtain a higher success probability.All these advantages make it quite useful in current quantum communication and computation applications.展开更多
Recently, Xiu et al. [Commun. Theor. Phys. 49 (2008) 905] proposed two schemes of teleporting an N particle arbitrary and unknown state when N groups of three particle general W states are utilized a.s quantum chann...Recently, Xiu et al. [Commun. Theor. Phys. 49 (2008) 905] proposed two schemes of teleporting an N particle arbitrary and unknown state when N groups of three particle general W states are utilized a.s quantum channels. They gave the maximal probability of successful teleportation. Here we find that their operation is not the optimal and the successful probability of the teleportation is not maximum. Moreover, we give the optimal schemes operation and obtain maximal successful probability for teleportation.展开更多
Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigen...Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigenvalues and the corresponding wave functions expressed in terms of a Jacobi polynomial are also obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. Under limiting cases our result are in agreement with the existing literature. Our results could be used to study the interactions and binding energies of the central potential for diatomic molecules in the relativistic framework which have many applications in physics and some others related disciplines.展开更多
In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender ...In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.展开更多
文摘A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474168and 61401222)the Qing Lan Project in Jiangsu Province+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(Grant No20113223120002)University Natural Science Research Project of Jiangsu Province(Grant No.11KJB510016)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on the linear optical elements,say the partial parity check gate and the second protocol uses the quantum nondemolition measurement to construct the complete parity check gate.Both protocols can achieve the concentration task.These protocols have several advantages.First,they can obtain a maximally entangled W state only with the help of some single photons,which greatly reduces the number of entanglement resources.Second,in the first protocol,only linear optical elements are required,which is feasible with current techniques.Third,the second protocol can be repeated to perform the concentration step and obtain a higher success probability.All these advantages make it quite useful in current quantum communication and computation applications.
基金Supported by the National Natural Science Foundation of China under Grant No. 10902083the Natural Science Foundation of Shannxi Province under Grant No. 2009GM1007
文摘Recently, Xiu et al. [Commun. Theor. Phys. 49 (2008) 905] proposed two schemes of teleporting an N particle arbitrary and unknown state when N groups of three particle general W states are utilized a.s quantum channels. They gave the maximal probability of successful teleportation. Here we find that their operation is not the optimal and the successful probability of the teleportation is not maximum. Moreover, we give the optimal schemes operation and obtain maximal successful probability for teleportation.
文摘Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigenvalues and the corresponding wave functions expressed in terms of a Jacobi polynomial are also obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. Under limiting cases our result are in agreement with the existing literature. Our results could be used to study the interactions and binding energies of the central potential for diatomic molecules in the relativistic framework which have many applications in physics and some others related disciplines.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. Q1108404.
文摘In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.