本文收集了环烷烃类、环烯烃类、酮类、胺类、醚类、酯类等有机物在固定相角鲨烷和SE-30上的气相色谱保留指数,并采用基于Monte Carlo采样的模型集群分析(Monte Carlo sampling model population analysis,MCS MPA)方法进行了定量结构...本文收集了环烷烃类、环烯烃类、酮类、胺类、醚类、酯类等有机物在固定相角鲨烷和SE-30上的气相色谱保留指数,并采用基于Monte Carlo采样的模型集群分析(Monte Carlo sampling model population analysis,MCS MPA)方法进行了定量结构-色谱保留指数相关关系建模方法的比较研究。对于两种固定相上的有机化合物,分别采用不同的分子描述符予以表征,分子描述符的选择基于统计学与遗传算法。采用的建模方法包括多元线性回归(multivariate linear regression,MLR)、支持向量机回归(support vector machine,SVM)、径向基函数人工神经网络方法(radial basis function artificial neural networks,RBF ANN),通过所建模型预测了独立外部测试样本的气相色谱保留指数。研究结果表明,对于本文所研究的数据,SVM回归方法的建模效果优于MLR与RBF ANN方法。展开更多
精准快速获取计算机系统的实时功耗是功耗优化研究的基础,因此提出并建立了一种高精度的计算机功耗估算模型。通过分析统计系统运行时代表性的性能计数事件,应用机器学习理论分析性能事件与功耗的关系,建立多核计算机系统实时功耗估算...精准快速获取计算机系统的实时功耗是功耗优化研究的基础,因此提出并建立了一种高精度的计算机功耗估算模型。通过分析统计系统运行时代表性的性能计数事件,应用机器学习理论分析性能事件与功耗的关系,建立多核计算机系统实时功耗估算模型。模型构建时使用多元线性回归(multiple linear regression,MLR)方法以及支持向量回归(support vector regression,SVR)方法分析两者关系,并对两种方法建立的功耗估算模型进行了对比分析。实验结果表明,基于性能事件的功耗估算模型可准确估计计算机实时功耗,估算误差不高于3%。与已有模型相比较,该估算模型精度更高、通用性更好。展开更多
文摘本文收集了环烷烃类、环烯烃类、酮类、胺类、醚类、酯类等有机物在固定相角鲨烷和SE-30上的气相色谱保留指数,并采用基于Monte Carlo采样的模型集群分析(Monte Carlo sampling model population analysis,MCS MPA)方法进行了定量结构-色谱保留指数相关关系建模方法的比较研究。对于两种固定相上的有机化合物,分别采用不同的分子描述符予以表征,分子描述符的选择基于统计学与遗传算法。采用的建模方法包括多元线性回归(multivariate linear regression,MLR)、支持向量机回归(support vector machine,SVM)、径向基函数人工神经网络方法(radial basis function artificial neural networks,RBF ANN),通过所建模型预测了独立外部测试样本的气相色谱保留指数。研究结果表明,对于本文所研究的数据,SVM回归方法的建模效果优于MLR与RBF ANN方法。
文摘精准快速获取计算机系统的实时功耗是功耗优化研究的基础,因此提出并建立了一种高精度的计算机功耗估算模型。通过分析统计系统运行时代表性的性能计数事件,应用机器学习理论分析性能事件与功耗的关系,建立多核计算机系统实时功耗估算模型。模型构建时使用多元线性回归(multiple linear regression,MLR)方法以及支持向量回归(support vector regression,SVR)方法分析两者关系,并对两种方法建立的功耗估算模型进行了对比分析。实验结果表明,基于性能事件的功耗估算模型可准确估计计算机实时功耗,估算误差不高于3%。与已有模型相比较,该估算模型精度更高、通用性更好。