Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clona...Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clonal selection algorithm, to solve the multi-user detection problem in code-division multipleaccess communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. Theoretical analysis indicates that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most likely combinations.展开更多
Orthogonal frequency division multiplexing (OFDM) which has been adopted in the long-term evolution (LTE) system can improve the system capacity obviously. However, it also brings about severe inter-cell interfere...Orthogonal frequency division multiplexing (OFDM) which has been adopted in the long-term evolution (LTE) system can improve the system capacity obviously. However, it also brings about severe inter-cell interference (ICI) for cell-edge users (CEUs). To tackle this problem, multi-user selection and power control (MuS-PC) is proposed as an efficient scheme in uplink coordinated multi-point multi-user multi-input multi-output (CoMP-MU-MIMO) transmission/reception. This paper jointly considers user's signal to interference plus noise ratio (S1NR) and proportional fairness (PF) to maximize the total channel capacity in multi-user selection by formulating a penalty function. To simplify the penalty function's computation, particle swarm optimization (PSO) algorithm is introduced. In addition, power control is adopted to maximize overall energy efficiency. Simulation results demonstrate that the MuS-PC scheme can not only obtain the optimal total channel capacity while guarantee each user's quality of service (QoS) and PF, but also largely reduce computational complexity and improve energy efficiency. As a result, the poor communication quality of CEUs can be enhanced.展开更多
In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes exten...In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.展开更多
A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with re...A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60703107, 60703108)the National High-Tech Research & Develop-ment Program of China (Grant No. 2009AA12Z210)+1 种基金the Program for New Century Excellent Talents in University (Grant No. NCET-08-0811)the Program for Cheung Kong Scholars and Innovative Research Team in University (Grant No. IRT-06-45)
文摘Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clonal selection algorithm, to solve the multi-user detection problem in code-division multipleaccess communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. Theoretical analysis indicates that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most likely combinations.
基金supported by the National Science and Technology Major Project (2011ZX03001-007-03)the National Natural Science Foundation of China (61271182)the Fundamental Research Funds for the Central Universities (2013RC0112)
文摘Orthogonal frequency division multiplexing (OFDM) which has been adopted in the long-term evolution (LTE) system can improve the system capacity obviously. However, it also brings about severe inter-cell interference (ICI) for cell-edge users (CEUs). To tackle this problem, multi-user selection and power control (MuS-PC) is proposed as an efficient scheme in uplink coordinated multi-point multi-user multi-input multi-output (CoMP-MU-MIMO) transmission/reception. This paper jointly considers user's signal to interference plus noise ratio (S1NR) and proportional fairness (PF) to maximize the total channel capacity in multi-user selection by formulating a penalty function. To simplify the penalty function's computation, particle swarm optimization (PSO) algorithm is introduced. In addition, power control is adopted to maximize overall energy efficiency. Simulation results demonstrate that the MuS-PC scheme can not only obtain the optimal total channel capacity while guarantee each user's quality of service (QoS) and PF, but also largely reduce computational complexity and improve energy efficiency. As a result, the poor communication quality of CEUs can be enhanced.
文摘In this paper, distributed relay diversity systems are analyzed, modeled and evaluated in an Orthogonal Frequency Division Multiplexing (OFDM) based networks. The investigated distributed relay diversity schemes extend the ideas of a single hop transmit antenna schemes such as Cyclic Delay Diversity (CDD), Space Time Transmit Diversity (STTD), transmit Coherent Combining (CC) and Selection Diversity (SD) to distributed diversity systems. In contrast to the classical single hop system, the antennas in the distributed systems belongs to distributed relays instead of being co-located at the transmitter. The distributed relay diversity methods considered in this paper: Relay CDD (RCDD), Relay Alamouti (i.e.STTD), Relay CC (RCC) and Relay SD (RSD) are compared to the traditional 1-hop system. Analytical expressions for the received Signal to Interference Noise Ratio (SINR) are derived and used in a dynamic multi-cell multi-user simulator. Results show considerable SINR gains for both Round Robin and Max-SINR schedulers. The SINR gains translate into substantial cell throughput gains, up to 200%, compared to 1-hop systems. Despite its low complexity, the RCDD scheme has similar performance to that of other more sophisticated 2-hop schemes such as Relay Alamouti and Relay Coherent Combining. Marginally better results are observed for the Relay Selection Diversity scheme.
基金supported by the National Natural Science Foundation of China (60496314)the National High Technology Research and Development Program of China (2006AA01Z266).
文摘A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.