期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Actor-critic框架下的二次指派问题求解方法
1
作者 李雪源 韩丛英 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第2期275-284,共10页
二次指派问题(QAP)属于NP-hard组合优化问题,在现实生活中有着广泛应用。目前相对成熟的启发式算法通常以问题为导向来设计定制化算法,缺乏迁移泛化能力。为提供一个统一的QAP求解策略,将QAP问题的流量矩阵及距离矩阵抽象成两个无向完... 二次指派问题(QAP)属于NP-hard组合优化问题,在现实生活中有着广泛应用。目前相对成熟的启发式算法通常以问题为导向来设计定制化算法,缺乏迁移泛化能力。为提供一个统一的QAP求解策略,将QAP问题的流量矩阵及距离矩阵抽象成两个无向完全图并构造相应的关联图,从而将设施和地点的指派任务转化为关联图上的节点选择任务,基于actor-critic框架,提出一种全新的求解算法ACQAP。首先,利用多头注意力机制构造策略网络,处理来自图卷积神经网络的节点表征向量;然后,通过actor-critic算法预测每个节点被作为最优节点输出的概率;最后,依据该概率在可行时间内输出满足目标奖励函数的动作决策序列。该算法摆脱人工设计,且适用于不同规模的输入,更加灵活可靠。实验结果表明,在QAPLIB实例上,本算法在精度媲美传统启发式算法的前提下,迁移泛化能力更强;同时相对于NGM等基于学习的算法,求解的指派费用与最优解之间的偏差最小,且在大部分实例中,偏差均小于20%。 展开更多
关键词 二次指派问题 图卷积神经网络 深度强化学习 多头注意力机制 actor-critic算法
下载PDF
基于时空多头图注意力网络的交通流预测
2
作者 梁秀霞 夏曼曼 +1 位作者 何月阳 梁涛 《电子学报》 EI CAS CSCD 北大核心 2024年第2期500-509,共10页
针对当前路网交通流量预测方法中存在的挖掘复杂的动态时空特性和长距离的空间依赖性能力不足等问题,基于多头自注意力网络构建一种新型的交通流预测模型.考虑到交通流在不同周期尺度下呈现出的高度相似性,以及静态时空特征,引入日和周... 针对当前路网交通流量预测方法中存在的挖掘复杂的动态时空特性和长距离的空间依赖性能力不足等问题,基于多头自注意力网络构建一种新型的交通流预测模型.考虑到交通流在不同周期尺度下呈现出的高度相似性,以及静态时空特征,引入日和周这2种周期尺度下的数据张量作为模型输入,来表达交通流数据的时间相似性,并通过输入数据的时空位置编码获取其静态时空特征.考虑到交通流的动态时空特性和长距离的空间依赖性,主体模型基于多头自注意力机制分别设计时间多头注意力模块和空间多头注意力模块.时间多头注意力模块利用一个图掩码矩阵获得局部注意力,并将其融合到一个多头自注意力中,以提取交通流的动态时间特征.空间多头注意力模块利用两个图掩码矩阵获得局部注意力和全局注意力,并将其融合到一个多头自注意力中,以提取路网节点的动态空间特征和长距离的空间依赖性.最后,设计一个门控融合模块自适应地融合交通流数据的时空相关性特征.在三个真实交通流基准数据集PEMS04,PEMS07和PEMS08上进行模型的有效性验证,结果表明,所建模型在3个数据集上的3个预测精度指标与其他精度最高模型相比,平均提高了4.437%,2.930%,4.275%. 展开更多
关键词 智能交通 多头图注意力网络 图掩码机制 特征融合 时空数据位置嵌入
下载PDF
基于层次时空特征与多头注意力的恶意加密流量识别 被引量:22
3
作者 蒋彤彤 尹魏昕 +1 位作者 蔡冰 张琨 《计算机工程》 CAS CSCD 北大核心 2021年第7期101-108,共8页
为实现互联网全面加密环境下的恶意加密流量精确检测,针对传统识别方法较依赖专家经验且对加密流量特征的区分能力不强等问题,提出一种基于层次时空特征与多头注意力(HST-MHSA)模型的端到端恶意加密流量识别方法。基于流量层次结构,结... 为实现互联网全面加密环境下的恶意加密流量精确检测,针对传统识别方法较依赖专家经验且对加密流量特征的区分能力不强等问题,提出一种基于层次时空特征与多头注意力(HST-MHSA)模型的端到端恶意加密流量识别方法。基于流量层次结构,结合长短时记忆网络和Text CNN有效整合加密流量的多尺度局部特征和双层全局特征,并引入多头注意力机制进一步增强关键特征的区分度。在公开数据集CICAnd Mal2017上的实验结果表明,HST-MHSA模型的流量识别F1值相较基准模型最高提升了16.77个百分点,漏报率比HAST-Ⅱ和HABBi LSTM模型分别降低了3.19和2.18个百分点,说明其对恶意加密流量具有更强的表征和识别能力。 展开更多
关键词 加密流量识别 多头注意力机制 恶意流量识别 卷积神经网络 长短时记忆网络
下载PDF
基于多头注意力机制Tree-LSTM的句子语义相似度计算 被引量:18
4
作者 胡艳霞 王成 +2 位作者 李弼程 李海林 吴以茵 《中文信息学报》 CSCD 北大核心 2020年第3期23-33,共11页
针对现有句子语义相似度计算由于缺乏语义结构信息导致精度低的问题,该文在依存关系树的基础上,提出了一种基于多头注意力机制Tree-LSTM(multi-head attention Tree-LSTM,MA-Tree-LSTM)的句子语义相似度计算方法。首先,MA-Tree-LSTM将... 针对现有句子语义相似度计算由于缺乏语义结构信息导致精度低的问题,该文在依存关系树的基础上,提出了一种基于多头注意力机制Tree-LSTM(multi-head attention Tree-LSTM,MA-Tree-LSTM)的句子语义相似度计算方法。首先,MA-Tree-LSTM将外部具有指导意义的特征作为输入,再将输入结合多头注意力机制作用在Tree-LSTM树节点的所有孩子节点上,为每个孩子节点赋予不同的权重值,从而实现多头注意力机制和Tree-LSTM的融合;其次,将三层的MA-Tree-LSTM应用于句子语义相似度计算并实现句子对的相互指导,从而得到句子对语义特征的多层表示;最后联合多层的语义特征建立句子对语义相似度计算模型,从而实现句子对间相关的语义结构特征的充分利用。该文提出的方法鲁棒性强,可解释性强,对句子单词的顺序不敏感,不需要特征工程。在SICK和STS数据集上的实验结果表明,基于MA-Tree-LSTM的句子语义相似度计算的精度优于非注意力机制的Tree-LSTM方法以及融合了多头注意力机制的BiLSTM方法。 展开更多
关键词 句子语义相似度计算 多头注意力机制 Tree-LSTM 语义依存树
下载PDF
基于多头注意力机制的用户窃电行为检测 被引量:10
5
作者 肖丁 张玙璠 纪厚业 《计算机科学》 CSCD 北大核心 2022年第1期140-145,共6页
窃电对社会和经济发展造成了重大损害。如何基于电力大数据来检测用户恶意窃电行为,已受到学术界和工业界的广泛关注。针对传统方法依赖于手工特征、行为序列表征不足和检测精度差等问题,提出了一种基于多头注意力机制的窃电检测模型(El... 窃电对社会和经济发展造成了重大损害。如何基于电力大数据来检测用户恶意窃电行为,已受到学术界和工业界的广泛关注。针对传统方法依赖于手工特征、行为序列表征不足和检测精度差等问题,提出了一种基于多头注意力机制的窃电检测模型(Electricity Theft Detection Based on Multi-Head Attention, ETD-MHA)。该模型基于双向门控循环神经网络(Bidirectional Gated Recurrent Unit, BiGRU)充分捕获用户用电行为序列的时序特征,引入多头注意力机制来进一步增强关键特征的区分度,并通过加深网络来提高学习效果。在爱尔兰和中国国家电网智能电表数据集上进行了大量的实验,结果表明,相比传统的逻辑回归(Linear Regression, LR)、支持向量机(Support Vector Machine, SVM)、随机森林(Random Forest, RF)等多种算法,所提模型展现出了明显的优势。例如,在爱尔兰智能电表数据集上,其AUC值相比LR算法最高提升了34.6%。 展开更多
关键词 智能电网 窃电检测 深度学习 门控循环神经网络 多头注意力机制
下载PDF
改进YOLOv7的沥青路面病害检测 被引量:7
6
作者 倪昌双 李林 +3 位作者 罗文婷 秦勇 杨振 傅幼华 《计算机工程与应用》 CSCD 北大核心 2023年第13期305-316,共12页
针对传统卷积网络对沥青路面病害检测时存在的检测精度低、定位不准等问题,提出一种基于改进YOLOv7的沥青路面病害检测算法。针对激光图像的成像特征,使用组合滤波-三直方图均衡化算法弱化背景环境干扰;使用K-means++聚类算法进行初始... 针对传统卷积网络对沥青路面病害检测时存在的检测精度低、定位不准等问题,提出一种基于改进YOLOv7的沥青路面病害检测算法。针对激光图像的成像特征,使用组合滤波-三直方图均衡化算法弱化背景环境干扰;使用K-means++聚类算法进行初始锚框设置来加快模型收敛速度;然后将多头自注意力机制与最大池化层结合代替模型主干框架中部分卷积层,提高卷积网络对于目标物全局特征学习能力;使用漏斗激活函数F-ReLU作为主干网络中的激活函数以扩大卷积层的感受野范围;最后使用A-SIOU损失函数优化模型边界框回归,加快模型收敛的同时提高训练精度。实验结果表明,改进后的检测算法对病害检测的平均精度均值、精确率和召回率相较原网络提升了7.7、9.4与5.8个百分点,具有较好的识别精度。在实际工程应用中,对各路段的路面状况指数的计算偏差均小于1%,对推进路面病害的智能化检测具有重要意义。 展开更多
关键词 路面病害检测 深度学习 激光图像 多头自注意力机制 损失函数 激活函数
下载PDF
基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究 被引量:10
7
作者 张振坤 张冬梅 +1 位作者 李江 吴益平 《岩土力学》 EI CAS CSCD 北大核心 2022年第S02期477-486,507,共11页
受自身地质条件及外界周期、随机等因素影响,滑坡演变过程具有典型跃变特征。传统基于门控机制的深度学习模型对阶跃型滑坡预测能力不足,多头自注意力通过关注不同尺度时序数据的隐含信息能自适应挖掘序列的变化程度特征,有效学习数据... 受自身地质条件及外界周期、随机等因素影响,滑坡演变过程具有典型跃变特征。传统基于门控机制的深度学习模型对阶跃型滑坡预测能力不足,多头自注意力通过关注不同尺度时序数据的隐含信息能自适应挖掘序列的变化程度特征,有效学习数据潜在变化趋势,提升序列的预测能力。研究基于变分模态分解技术将滑坡累积位移量分解成趋势项、周期项和随机项,对各位移分量和影响因子开展动态时间规整相关性分析。结合多头自注意力机制和长短时记忆网络模型对各位移分量进行动态预测,各位移分量预测值相加得到实际预测结果。以三峡库区白水河滑坡作为研究区,对监测点ZG118开展累积位移预测,采用监测点ZG93、XD01进行模型适应性验证,试验结果表明对于降雨、库水位变化导致的阶跃数据段,新模型能大大提升预测的精度,为三峡库区滑坡位移预测研究提供新的思路。 展开更多
关键词 滑坡位移预测 变分模态分解 动态时间规整 多头自注意力机制 长短时记忆网络
下载PDF
改进MFCC和并行混合模型的语音情感识别 被引量:6
8
作者 崔琳 崔晨露 +1 位作者 刘政伟 薛凯 《计算机科学》 CSCD 北大核心 2023年第S01期156-162,共7页
传统MFCC不仅忽略了浊音信号中基音频率的影响,还不能表征语音的动态特征,因此提出利用滑动平均滤波器滤除浊音信号的基音频率,并在提取完静态MFCC特征后再通过提取其一阶差分与二阶差分来获取动态特征。将得到的特征送入模型中进行训练... 传统MFCC不仅忽略了浊音信号中基音频率的影响,还不能表征语音的动态特征,因此提出利用滑动平均滤波器滤除浊音信号的基音频率,并在提取完静态MFCC特征后再通过提取其一阶差分与二阶差分来获取动态特征。将得到的特征送入模型中进行训练,为了构建更高效的语音情感识别模型,搭建了一种融合多头注意力机制的并行混合模型。多头注意力机制不仅可以有效防止梯度消失现象,构建更深层的网络,各个注意力头还可以执行不同的任务来提高准确率。最后进行情感特征分类,传统softmax在进行分类时类内距离可能会变大导致模型的置信度差,因此引入了中心损失函数,将两者联合来进行分类。实验结果表明,所提方法在RAVDESS数据集和EMO-DB数据集上的准确率可以分别达到98.15%和96.26%。 展开更多
关键词 语音情感识别 MFCC 多头注意力机制 滑动平均滤波器 softmax
下载PDF
融入领域术语词典的司法舆情敏感信息识别 被引量:9
9
作者 张泽锋 毛存礼 +2 位作者 余正涛 黄于欣 刘奕洋 《中文信息学报》 CSCD 北大核心 2022年第9期76-83,92,共9页
司法舆情敏感信息识别主要是从海量网络文本中识别出与司法领域相关的敏感舆情。当前,面向司法舆情敏感信息识别的研究较少,相比通用领域的敏感信息识别任务,司法舆情敏感信息具有描述不规范、冗余信息多以及领域词汇过多等特点,这使得... 司法舆情敏感信息识别主要是从海量网络文本中识别出与司法领域相关的敏感舆情。当前,面向司法舆情敏感信息识别的研究较少,相比通用领域的敏感信息识别任务,司法舆情敏感信息具有描述不规范、冗余信息多以及领域词汇过多等特点,这使得通用模型并不适用该任务。为此,该文提出融入领域术语词典的司法舆情敏感信息识别模型。首先使用双向循环神经网络和多头注意力机制对舆情文本进行编码,得到具有权重信息的文本表示;其次将领域术语词典作为分类的指导知识,与舆情文本表征构建相似矩阵,得到融入领域术语词典的司法敏感文本表征;然后利用卷积神经网络对其进行局部信息编码,再利用多头注意力机制获取具有敏感权重的局部特征;最后实现司法领域敏感信息识别。实验结果表明,相比Bi-LSTM Attention基线模型,F_(1)值提升了8%。 展开更多
关键词 司法舆情 敏感信息 领域术语词典 多头注意力机制
下载PDF
结合用户画像的DTW-MANN-FM分布式光伏短期出力预测模型 被引量:5
10
作者 周家亿 赵双双 +3 位作者 王忠东 高凡 王贺 徐孝琳 《太阳能学报》 EI CAS CSCD 北大核心 2023年第9期187-193,共7页
为解决分布式光伏短期预测中发电户特性差异、地理位置偏移导致气象数据偏差的问题,并进一步提升算法预测性能,提出结合用户画像的动态时间规整(dynamic time warping,DTW)-多头自注意力神经网络(multi-head attention neural network,M... 为解决分布式光伏短期预测中发电户特性差异、地理位置偏移导致气象数据偏差的问题,并进一步提升算法预测性能,提出结合用户画像的动态时间规整(dynamic time warping,DTW)-多头自注意力神经网络(multi-head attention neural network,MANN)-因子分解机(factorization machine,FM)预测模型。首先分析发电户档案数据和历史发电数据,统计出用户画像;再结合基于DTW标准气象特征修正偏移算法,形成合理、完善的“用户+气象”特征组合样本;最后使用加权的数据样本对模型进行训练。仿真阶段使用江苏省真实光伏、气象数据,将所提模型与当前业界先进的若干光伏预测模型进行对比实验,结果表明该模型具有更高的准确度和鲁棒性,表现出更佳的预测性能。 展开更多
关键词 分布式发电 神经网络 用户画像 光伏发电预测 多头自注意力机制
下载PDF
融合注意力机制的轨道入侵异物检测轻量级模型研究 被引量:4
11
作者 管岭 贾利民 谢征宇 《铁道学报》 EI CAS CSCD 北大核心 2023年第5期72-81,共10页
基于智能视频分析的轨道线路环境入侵物自主识别是保障轨道交通运营安全的关键技术之一。然而基于神经网络的高精度目标检测模型严重依赖算力,部署成本高,很难普及运用。为此,提出一种改进yolov4-tiny的轻量级网络模型。在网络主干,通... 基于智能视频分析的轨道线路环境入侵物自主识别是保障轨道交通运营安全的关键技术之一。然而基于神经网络的高精度目标检测模型严重依赖算力,部署成本高,很难普及运用。为此,提出一种改进yolov4-tiny的轻量级网络模型。在网络主干,通过融合跨阶段结构和通道混洗策略,提出CSPShuffleNet结构,加快网络推理;在网络颈部,引入多头注意力机制,增强网络目标定位能力;在网络头部,使用深度可分离卷积替换传统卷积,进一步压缩网络参数量。基于铁路异物数据集的实验结果表明:相比于原始yolov4-tiny,本模型的均值平均精度最大提高1.4%,参数量减少49.9%,模型容量减少55.4%。验证了本模型对于固定平台和移动平台检测系统的普适性,从而为铁路安全保障提供决策支持。 展开更多
关键词 异物入侵检测 轻量化神经网络 深度可分离卷积 通道混洗 多头注意力机制
下载PDF
基于Transformer模型的商品评论情感分析 被引量:8
12
作者 杜朋 卢益清 韩长风 《中文信息学报》 CSCD 北大核心 2021年第2期125-132,共8页
该文通过研究商品评论正、负向情感识别任务,基于Transformer模型,提出了一种结合多头自注意力层和卷积层的神经网络模型,其中多头自注意力层丰富了词语之间的关联关系,卷积操作进行特征的再提取和融合。通过和双向长期时记忆网络(bidir... 该文通过研究商品评论正、负向情感识别任务,基于Transformer模型,提出了一种结合多头自注意力层和卷积层的神经网络模型,其中多头自注意力层丰富了词语之间的关联关系,卷积操作进行特征的再提取和融合。通过和双向长期时记忆网络(bidirectional long short-term memory networks, BILSTM)、基于注意力机制的BILSTM网络、文本卷积神经网络(text convolutional neural networks, TEXTCNN)进行对比,实验证明,该文提出的模型在商品评论情感分类任务的最高准确率分别提高了4.12%、1.47%、1.36%,同时训练用时也大大缩减。 展开更多
关键词 情感分析 多头自注意力机制 神经网络 商品评论
下载PDF
基于卷积神经网络和Transformer的肝脏CT图像分割方法 被引量:4
13
作者 胡晓阳 李哲 《中国医学物理学杂志》 CSCD 2023年第4期423-428,共6页
针对现有的卷积神经网络在肝脏图像分割上精度较低的问题,提出了一种以U-Net网络模型为基础的分割算法。将多头自注意力机制引入到U-Net网络的跳跃连接中,在编码器部分使用空洞卷积,采用混合损失函数从而提高分割精度。在LITS数据集上... 针对现有的卷积神经网络在肝脏图像分割上精度较低的问题,提出了一种以U-Net网络模型为基础的分割算法。将多头自注意力机制引入到U-Net网络的跳跃连接中,在编码器部分使用空洞卷积,采用混合损失函数从而提高分割精度。在LITS数据集上通过实验结果表明,利用本文方法进行肝脏分割与传统U-Net方法相比Dice系数提升3.3%,平均交并比提升了2.4%,平均像素准确率提升了3.66%。 展开更多
关键词 卷积神经网络 肝脏 图像分割 多头自注意力机制 空洞卷积
下载PDF
基于多头注意力机制的多模态帕金森病安全检测系统 被引量:1
14
作者 季培琛 李晨 《计算机测量与控制》 2024年第3期138-145,共8页
在实际的帕金森病远程诊断过程中,应用单模态数据检测帕金森病存在误诊率较高的问题,且远程诊断的安全性问题突出;为提高帕金森病远程诊断准确率与安全性,设计一种具有隐私保护功能的帕金森病多模态安全远程辅助检测系统;使用帕金森病... 在实际的帕金森病远程诊断过程中,应用单模态数据检测帕金森病存在误诊率较高的问题,且远程诊断的安全性问题突出;为提高帕金森病远程诊断准确率与安全性,设计一种具有隐私保护功能的帕金森病多模态安全远程辅助检测系统;使用帕金森病语音和步态双模态数据,在传统卷积神经网络后融合多头注意力机制与多层感知机,有效提高模型的特征提取、融合与识别能力;为了保证数据传输过程的安全性,使用基于余弦混沌的差分隐私加噪方式扰动随机拆分的数据编号,提高帕金森病数据传输安全性;通过两模态消融实验和对比实验结果表明,提出的基于多头注意力机制的帕金森病多模态远程检测模型实际测试准确率达到0.913,且模型的各项评估指标和收敛速度等均高于传统模型,具备良好的帕金森病智能辅助检测效果,能够满足帕金森病早期智能安全筛查与诊断需求。 展开更多
关键词 帕金森病 多头注意力机制 余弦混沌 差分隐私 多模态远程检测
下载PDF
基于民机维修文本数据的故障诊断方法 被引量:3
15
作者 贾宝惠 姜番 +1 位作者 王玉鑫 王杜 《航空学报》 EI CAS CSCD 北大核心 2023年第5期253-267,共15页
在民航检修与维护过程中积累了大量蕴含丰富故障特征的文本维修记录,然而由于维修文本本身存在复杂性,其还未实现智能诊断,数据利用率低。提出一种不断修正迭代的基于预训练语言模型双向转换器编码表示(BERT)及轻量级梯度提升机(LightG... 在民航检修与维护过程中积累了大量蕴含丰富故障特征的文本维修记录,然而由于维修文本本身存在复杂性,其还未实现智能诊断,数据利用率低。提出一种不断修正迭代的基于预训练语言模型双向转换器编码表示(BERT)及轻量级梯度提升机(LightGBM)的飞机维修记录的故障原因分析方法,求解文本形式的维修记录中的故障原因,用以辅助维修人员进行正确的维修决策。首先,在基于BERT的故障诊断模型Transformer特征提取架构中引入多头注意力机制,以充分捕捉融合上下文的双向语义、更加关注于重点词汇;其次,为了提高诊断速度减少模型的参数并融合LightGBM模型来实现维修文本的故障原因分类;最后,将改进的模型与其他常用文本分析模型进行对比实验,在基于民机维修文本的故障诊断中该模型的准确率比TextCNN模型、LSTM模型和BiLSTM模型分别提升了38.99%、22.98%和18.16%,且BERT-LightGBM模型比BERT模型诊断速度提升了0.91%。表明所提方法在实现飞机维修文本故障诊断方面的有效性及优越性。 展开更多
关键词 飞机维修文本 故障诊断 BERT LightGBM 多头注意力机制 参数优化
原文传递
检测脑电癫痫的多头自注意力机制神经网络 被引量:3
16
作者 仝航 杨燕 江永全 《计算机科学与探索》 CSCD 北大核心 2023年第2期442-452,共11页
癫痫是一种危及生命且具有挑战性的神经系统疾病,目前基于脑电图(EEG)的癫痫检测方法依然存在很多挑战,脑电图信号是不稳定的,不同的病人表现出的癫痫发作模式不同,检测脑电信号耗时费力,不仅会给医务人员带来沉重的负担,还容易造成误... 癫痫是一种危及生命且具有挑战性的神经系统疾病,目前基于脑电图(EEG)的癫痫检测方法依然存在很多挑战,脑电图信号是不稳定的,不同的病人表现出的癫痫发作模式不同,检测脑电信号耗时费力,不仅会给医务人员带来沉重的负担,还容易造成误检情况的发生。因此,研究高效的跨多患者的癫痫自动检测技术是非常有必要的。提出了一种基于多头自注意力机制神经网络的癫痫脑电检测方法(CABLNet),利用卷积层捕获脑电时序信号的短期时间模式和各通道之间的局部依赖关系,使用多头自注意力机制进一步捕获具有时序关系的短期时间模式特征向量的长距离依赖关系和时间动态相关性,将上下文表示送入双向长短时记忆网络(BiLSTM)提取前后方向的信息,用logsoftmax函数进行训练和分类。实验使用CHB-MIT头皮脑电数据库数据,灵敏度、特异性、准确率、F1-score分别为96.18%、97.04%、96.61%、96.59%,结果表明,提出的方法优于现有方法,在癫痫检测性能方面有显著提高,对癫痫的辅助诊断具有重要意义。 展开更多
关键词 脑电图 癫痫 癫痫检测 深度学习 多头自注意力机制
下载PDF
基于特征增强和语义相关性匹配的图像文本检索方法 被引量:1
17
作者 陈佳 张鸿 《计算机应用》 CSCD 北大核心 2024年第1期16-23,共8页
为实现图像文本检索中图像与文本的精确语义连接,提出一种基于特征增强和语义相关性匹配(FESCM)的图像文本检索方法。首先,通过特征增强表示模块,引入多头自注意力机制增强图像区域特征和文本单词特征,以减少冗余信息对图像区域和文本... 为实现图像文本检索中图像与文本的精确语义连接,提出一种基于特征增强和语义相关性匹配(FESCM)的图像文本检索方法。首先,通过特征增强表示模块,引入多头自注意力机制增强图像区域特征和文本单词特征,以减少冗余信息对图像区域和文本单词对齐的干扰;其次,通过语义相关性匹配模块,不仅利用局部匹配捕获局部显著对象之间的对应相关性,还把图像背景信息融入图像全局特征,利用全局匹配实现精确的全局语义相关性;最后,通过局部匹配分数和全局匹配分数获取图像和文本的最终匹配分数。实验结果表明,基于FESCM的图像文本检索方法在Flickr8k和Flickr30k基准数据集上的召回率总值比扩展的视觉语义嵌入方法分别提升了5.7和7.5个百分点,在MS-COCO数据集比双流层次相似度推理方法提升了3.7个百分点。因此该方法可以有效提高图像文本检索的准确度,实现图像与文本的语义连接。 展开更多
关键词 图像文本检索 特征增强表示 多头自注意力机制 语义相关性匹配
下载PDF
融合多头自注意力机制的金融新闻极性分析 被引量:7
18
作者 赵亚南 刘渊 宋设 《计算机工程》 CAS CSCD 北大核心 2020年第8期85-92,共8页
针对现有文本情感分析方法存在的无法高效捕捉相关文本情感特征从而造成情感分析效果不佳的问题,提出一种融合双层多头自注意力与卷积神经网络(CNN)的回归模型DLMA-CNN。采用多头自注意力机制学习序列内部的词依赖关系,从而捕获序列的... 针对现有文本情感分析方法存在的无法高效捕捉相关文本情感特征从而造成情感分析效果不佳的问题,提出一种融合双层多头自注意力与卷积神经网络(CNN)的回归模型DLMA-CNN。采用多头自注意力机制学习序列内部的词依赖关系,从而捕获序列的内部结构。重利用浅层特征并与多头自注意力特征进行融合,结合深度学习中的CNN进一步优化文本情感极性分析效果。在基准数据集SemEval-2017 Task 5上进行实验,结果表明,与传统机器学习算法CNN、ELSTM、Att-BLSTM等相比,该模型取得了较好的情感极性分析效果,且运行效率较高。 展开更多
关键词 金融文本 情感极性分析 多头自注意力机制 特征融合 深度学习
下载PDF
基于注意力机制的可解释点击率预估模型研究 被引量:3
19
作者 杨斌 梁婧 +1 位作者 周佳薇 赵梦赐 《计算机科学》 CSCD 北大核心 2023年第5期12-20,共9页
在推荐系统研发中,点击率(Click-Through Rate,CTR)预估是非常重要的工作,点击率预估精度的提升直接影响到整个推荐系统的收益,对其性能和解释性的研究有助于理解系统决策的机理,同时还能帮助优化需求和系统设计。当前点击率预估深度模... 在推荐系统研发中,点击率(Click-Through Rate,CTR)预估是非常重要的工作,点击率预估精度的提升直接影响到整个推荐系统的收益,对其性能和解释性的研究有助于理解系统决策的机理,同时还能帮助优化需求和系统设计。当前点击率预估深度模型多基于线性特征交互和深度特征提取进行设计。由于深度模型的黑盒特点,该类模型在解释性方面存在局限性,并且在先前的研究中,对点击率预估模型的解释性研究非常少。因此,文中基于多头自注意力机制,对该类模型的解释性进行研究,通过多头注意力机制对特征嵌入、线性特征交互和深度部分进行增强和解释,在深度部分设计了两种模型,即注意力增强的深度神经网络和注意力叠加的深度模型,通过计算每个模块的注意力得分对其进行解释。所提方法在多个真实数据集上进行了大量实验,结果表明所提方法能够有效提升模型效果,并且模型自身带有一定的解释性。 展开更多
关键词 推荐系统 点击率预估 多头自注意力机制 特征交互 模型解释性
下载PDF
改进YOLOX-s的密集垃圾检测方法 被引量:1
20
作者 谢若冰 李茂军 +1 位作者 李宜伟 胡建文 《计算机工程与应用》 CSCD 北大核心 2024年第5期250-258,共9页
针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得... 针对密集堆放的多种类垃圾检测存在识别率低、定位不够准确和待测目标被误检、漏检问题,提出了一种融合多头自注意力机制改进YOLOX-s的垃圾检测方法。在特征提取网络嵌入SwinTransformer模块,引入基于滑窗操作的多头自注意力机制,使得网络兼顾全局特征信息和重点特征信息,减少误检现象;在预测输出网络中使用可变形卷积,对初始预测框进行精细化处理,提高定位精度;在EIoU损失的基础上引入加权系数,提出加权IoU-EIoU损失,自适应调整训练时不同阶段不同损失的关注程度,进一步加快训练网络的收敛速度。在公开204类垃圾检测数据集中进行测试,结果表明,所提改进算法的平均精度均值分别可达80.5%和92.5%,优于当前流行目标检测算法,且检测速度快,满足实时性需求。 展开更多
关键词 密集垃圾检测 多头自注意力机制 YOLOX-s 深度学习
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部