期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于多领域学习的台区负荷预测研究
1
作者 许轩博 蔡建逸 +1 位作者 罗乔尹 罗颖 《计算机应用文摘》 2024年第12期120-122,125,共4页
配网台区负荷预测的准确性关系着电力系统的稳定运行,其中精准的台区负荷预测有利于电网企业提前做好预控措施。当前,台区负荷受制于多种因素,导致负荷预测偏差值较大。文章应用多领域学习训练框架,对来自不同台区的负荷数据进行了整合... 配网台区负荷预测的准确性关系着电力系统的稳定运行,其中精准的台区负荷预测有利于电网企业提前做好预控措施。当前,台区负荷受制于多种因素,导致负荷预测偏差值较大。文章应用多领域学习训练框架,对来自不同台区的负荷数据进行了整合,旨在提高负荷预测的准确性和稳定性。其中,利用共享的特征提取器对通用的特征表示进行了提取,为每个领域设置了专门的预测器以实现领域特定的学习。同时,通过实验验证了模型的可行性,不仅有助于提高负荷预测的精准度,还为电网企业的台区管控措施优化奠定了基础。 展开更多
关键词 台区 预测 多领域学习 卷积神经网络 多层感知机
下载PDF
Multi-Domain Sentiment Classification with Classifier Combination 被引量:5
2
作者 李寿山 黄居仁 宗成庆 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期25-33,共9页
State-of-the-arts studies on sentiment classification are typically domain-dependent and domain-restricted. In this paper, we aim to reduce domain dependency and improve overall performance simultaneously by proposing... State-of-the-arts studies on sentiment classification are typically domain-dependent and domain-restricted. In this paper, we aim to reduce domain dependency and improve overall performance simultaneously by proposing an efficient multi-domain sentiment classification algorithm. Our method employs the approach of multiple classifier combination. In this approach, we first train single domain classifiers separately with domain specific data, and then combine the classifiers for the final decision. Our experiments show that this approach performs much better than both single domain classification approach (using the training data individually) and mixed domain classification approach (simply combining all the training data). In particular, classifier combination with weighted sum rule obtains an average error reduction of 27.6% over single domain classification. 展开更多
关键词 sentiment classification multiple classifier system multi-domain learning
原文传递
文本分类中的主动多域学习 被引量:3
3
作者 赖娟 金澎 洪艳伟 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期108-114,共7页
现有主动学习主要着眼于对单个域训练方法的研究,不同域有不同的特征,同时也存在一些隐含的共性.如何从多个域中选择合适数据样本成为多域学习中减少人工标注工作量的关键.本文提出了一个新颖的主动多域学习框架,该框架充分考虑了重复信... 现有主动学习主要着眼于对单个域训练方法的研究,不同域有不同的特征,同时也存在一些隐含的共性.如何从多个域中选择合适数据样本成为多域学习中减少人工标注工作量的关键.本文提出了一个新颖的主动多域学习框架,该框架充分考虑了重复信息,并可从多个域中选择合适的数据样本.该框架首先找到一个包含不同域间隐含共性的共享子空间,然后将所有数据样本分解为公共域部分和个性域部分,其中公共域部分可视为域间的重复信息,该部分在查询时需要被考虑到.最后,将主动多域学习方法与最新的主动学习方法的性能进行了比对,实验结果表明,本文提出的主动多域学习方法在减少人工标注工作量方面有显著作用. 展开更多
关键词 主动学习 多域学习 隐含共性 共享子空间
下载PDF
基于多域对抗学习的无人机目标跟踪算法 被引量:1
4
作者 张高峰 张雄 +3 位作者 武晓嘉 上官宏 王安红 李晏隆 《计算机工程与设计》 北大核心 2021年第10期2962-2969,共8页
针对无人机视频跟踪中正样本不足和单帧强判别特征易导致分类器过拟合的问题,提出一种基于多域对抗学习的实时无人机目标跟踪算法。将生成对抗网络引入到多域学习的特征生成中,利用对抗学习提高特征提取的鲁棒性;在卷积层中加入具有不... 针对无人机视频跟踪中正样本不足和单帧强判别特征易导致分类器过拟合的问题,提出一种基于多域对抗学习的实时无人机目标跟踪算法。将生成对抗网络引入到多域学习的特征生成中,利用对抗学习提高特征提取的鲁棒性;在卷积层中加入具有不同扩展系数的空洞卷积进行多尺度特征抽取,构建具有不同感受野的特征提取模块;在交叉熵损失函数中添加调制因子解决正负样本数量不平衡的问题。实验结果表明,该算法的跟踪精度、成功率均得到了提高。 展开更多
关键词 无人机 目标跟踪 多域学习 生成对抗 空洞卷积
下载PDF
结合多模板的多域卷积神经网络视觉跟踪算法
5
作者 王鹏翔 郭敬滨 +1 位作者 谭文斌 李醒飞 《红外技术》 CSCD 北大核心 2018年第1期47-54,共8页
为了适应视觉跟踪过程中目标外观变化,提高视觉跟踪算法的鲁棒性,本文基于卷积神经网络(Convolutional Neural Network,CNN)并结合多域学习法与多模板管理,提出一种通过树形结构管理多模板的多域卷积神经网络(Multi-Domain CNNs with Mu... 为了适应视觉跟踪过程中目标外观变化,提高视觉跟踪算法的鲁棒性,本文基于卷积神经网络(Convolutional Neural Network,CNN)并结合多域学习法与多模板管理,提出一种通过树形结构管理多模板的多域卷积神经网络(Multi-Domain CNNs with Multiple Models in a tree structure)视觉跟踪算法。首先使用大量已标记目标位置的视频数据预训练多域结构的CNN,使CNN卷积层可从图像中提取出适用于跟踪任务的特征。然后在跟踪时中对CNN全连接层进行微调以适应跟踪目标,并使用树形结构管理存储不同时间段的目标模板得到模板树。使用模板树综合评价待检测帧,估计目标位置。最后按照一定规则将新模板添加进模板树,完成模板的更新。实验表明,该算法对跟踪过程中目标外观的变化有着良好的适应性,同时多模板可抑制CNN在跟踪时产生的模板漂移问题。 展开更多
关键词 视觉跟踪 深度学习 卷积神经网络 多域学习 多模板
下载PDF
基于多域学习的红外空中目标跟踪算法
6
作者 庄旭阳 陈宝国 《电子质量》 2021年第3期1-6,共6页
自深度学习技术被提出以来,迅速风靡各个学术领域,极大地推动了图像处理技术的发展。红外目标跟踪技术是红外导引领域的一项关键技术,但目前深度学习技术在图像处理中的应用主要集中在可见光领域,在红外领域鲜有应用。同时,由于红外场... 自深度学习技术被提出以来,迅速风靡各个学术领域,极大地推动了图像处理技术的发展。红外目标跟踪技术是红外导引领域的一项关键技术,但目前深度学习技术在图像处理中的应用主要集中在可见光领域,在红外领域鲜有应用。同时,由于红外场景的复杂性,红外空中目标跟踪的效果遭遇瓶颈。该文基于多域学习训练思想,设计开发了一种应用于红外领域的目标跟踪卷积神经网络,利用VOT2016红外数据集训练后,在仿真红外空中目标序列上达到了优秀的跟踪速度和跟踪精度,并具备一定的抗干扰能力。 展开更多
关键词 深度学习 红外导引 目标跟踪 多域学习 抗干扰
下载PDF
基于物理模型的级联生成对抗网络加速定量多参数磁共振成像
7
作者 刘羽轩 楚智钦 张煜 《南方医科大学学报》 CAS CSCD 北大核心 2023年第8期1402-1409,共8页
目的探讨基于物理模型的级联生成对抗网络使用原始的多回波多线圈k空间数据加速定量多回波多参数磁共振成像方法的可行性分析与解释。方法提出了一种基于物理模型的级联生成对抗网络,利用多域信息联合训练以及通过系统矩阵学习图像重建... 目的探讨基于物理模型的级联生成对抗网络使用原始的多回波多线圈k空间数据加速定量多回波多参数磁共振成像方法的可行性分析与解释。方法提出了一种基于物理模型的级联生成对抗网络,利用多域信息联合训练以及通过系统矩阵学习图像重建所需的关键参数,并自适应地优化k空间生成器和图像生成器结构来增强图像特征信息以获得高质量的重建图像。使用原始的多回波多线圈k数据加速多对比度多参数磁共振图像成像。提出了基于物理驱动的深度学习重建方法,通过建立系统矩阵函数而不是直接通过模型端到端训练的方式来增加模型的泛化能力和提高模型性能。结果在整体回波图像质量评价方面,该模型在80例测试集上的重建图像的平均PSNR值为34.13,SSIM为0.965,NRMSE为0.114,大幅度优于本文的其它对比方法。在多对比度多参数图像重建方面,该模型评估的PDW、T1W以及T2*Map的PSNR分别为38.87、35.62和34.38,在定量上也显著优于其它对比方法,并拟合出更为清晰的大脑灰质、白质和脑脊液特征。除此以外,在重建时间相差不到10%的前提下与现有的方法相比,本研究的方法对PSNR、SSIM和NRMSE的指标提升最高可达到20%。结论相比现有的方法,基于物理模型的级联生成对抗网络方法可以重建出更多的图像细节和特征,从而提高了图像的质量和准确性,并有望将其应用于临床诊疗流程中。 展开更多
关键词 加速磁共振成像 多对比度多参数 物理模型 级联生成对抗网络 多域联合学习
下载PDF
基于多源域深度迁移学习的机械故障诊断 被引量:11
8
作者 杨胜康 孔宪光 +2 位作者 王奇斌 程涵 李中权 《振动与冲击》 EI CSCD 北大核心 2022年第9期32-40,共9页
针对不同工况下的机械故障诊断问题,迁移学习方法相比于深度学习具有明显的成效,单源域迁移故障诊断仍会出现负迁移和模型泛化能力差的问题。因此,本文提出一种基于多源域深度迁移学习的机械故障诊断方法。首先,进行锚适配器的构建,获... 针对不同工况下的机械故障诊断问题,迁移学习方法相比于深度学习具有明显的成效,单源域迁移故障诊断仍会出现负迁移和模型泛化能力差的问题。因此,本文提出一种基于多源域深度迁移学习的机械故障诊断方法。首先,进行锚适配器的构建,获得多源域-目标域适配器数据对。其次,建立基于深度域适应的迁移学习网络模型获得每个数据对的分类器与预测结果。最后,采用加权集成的方式进行分类器集成,用于最终的故障诊断识别。所提方法充分集成多源域故障特征信息,提取域不变特征,避免负迁移的问题,提高模型的泛化能力。通过一个滚动轴承数据来验证提出方法的性能,结果表明,多工况迁移故障诊断分类精度明显高于其中任意单一工况迁移,最高可提高8.78%,与其他方法相比,所提方法具有较好的精度和泛化能力。 展开更多
关键词 故障诊断 多源域迁移学习 锚适配器集成 深度神经网络
下载PDF
小样本下滚动轴承故障的多源域迁移诊断方法 被引量:11
9
作者 陈保家 陈学力 +3 位作者 肖文荣 陈法法 肖能齐 刘强 《电子测量与仪器学报》 CSCD 北大核心 2022年第2期219-228,共10页
为了减小神经网络在机械设备故障预示与健康管理(PHM)过程中对大量完备数据的依赖,针对数据稀少情况下的滚动轴承故障诊断问题,提出了一种多源域迁移学习方法。模型采用一维卷积神经网络(1D-CNN),以原始振动信号作为模型的输入,利用两... 为了减小神经网络在机械设备故障预示与健康管理(PHM)过程中对大量完备数据的依赖,针对数据稀少情况下的滚动轴承故障诊断问题,提出了一种多源域迁移学习方法。模型采用一维卷积神经网络(1D-CNN),以原始振动信号作为模型的输入,利用两个不同的源域数据依次对模型进行预训练,使用目标域数据对预训练模型进行微调,提高对目标域的识别精度。采用频询实验台实测数据及西储大学数据集,在目标域故障样本不足的情况下分别对模型的分类精度、训练速度、结果稳定性、多源域有效性进行验证,并与卷积神经网络(CNN)、迁移成分分析(TCA)、联合分布适配(JDA)、支持向量机(SVM)的诊断结果进行对比。实验结果表明,在故障数据稀少时,模型能达到较高的分类精度,在目标域样本数量不同的3种情况下,多源域迁移方法分类精度分别达到了97.71%、96.28%、94.18%,并且模型有着较快的收敛速度,较好的稳定性。 展开更多
关键词 多源域迁移学习 卷积神经网络 滚动轴承 故障诊断
下载PDF
基于特征差异增强的工程装备知识跨项目多源域迁移学习研究
10
作者 徐进 赵慧祺 +1 位作者 张泽慧 刘盾 《系统工程理论与实践》 EI CSCD 北大核心 2024年第3期1097-1113,共17页
工程装备智能化是发展智能建造的重要基础,项目知识是工程装备智能化的知识源泉,因此,工程装备知识跨项目的有效共享与利用是实现智能建造的重要环节.为了增强工程装备知识的跨项目利用效率与效果,本文提出了一种基于特征差异增强的多... 工程装备智能化是发展智能建造的重要基础,项目知识是工程装备智能化的知识源泉,因此,工程装备知识跨项目的有效共享与利用是实现智能建造的重要环节.为了增强工程装备知识的跨项目利用效率与效果,本文提出了一种基于特征差异增强的多源域迁移学习框架.该框架利用混合深度神经网络提取源项目的通用时空特征表示,基于项目相似度度量筛选可迁移源项目,通过所设计的特征差异增强方法挖掘多源域的域特殊特征表示并进行集成,在避免负迁移的同时实现工程装备知识的跨项目有效转移.本文使用多个隧道工程项目的数据进行了实验,在六个盾构设备姿态预测知识转移任务的两个预测目标上,该框架相较于基线模型的预测准确性平均提升度分别为86.48%、117.01%,并具有良好的稳健性和情景适应性.实验结果表明:本文所设计的新框架可以挖掘多个源域项目的特性知识并整合其共性知识,通过集成多源域迁移学习的知识来提高知识利用率,为大型工程装备知识的跨项目转移提供了有效的方法和工具,有助于提升施工项目的知识管理与智能建造水平. 展开更多
关键词 工程项目 项目知识转移 工程装备知识 多源域迁移学习 深度学习
原文传递
基于多源域迁移学习的行人重识别探讨
11
作者 张孟思 《移动信息》 2024年第4期301-304,共4页
文中以多源域迁移学习方法作为支持,对行人重识别策略的应用进行了分析,包括多源域迁移学习算法、行人重识别现状及其发展需求、多源域迁移学习方法下的行人重识别策略。以期为多源域迁移学习方法的合理应用与行人重识别质量的提升提供... 文中以多源域迁移学习方法作为支持,对行人重识别策略的应用进行了分析,包括多源域迁移学习算法、行人重识别现状及其发展需求、多源域迁移学习方法下的行人重识别策略。以期为多源域迁移学习方法的合理应用与行人重识别质量的提升提供科学参考,对提高监管区域监控效能具有积极意义。 展开更多
关键词 多源域迁移学习 行人重识别 监控效能
下载PDF
多源域分布下优化权重的迁移学习Boosting方法 被引量:1
12
作者 李赟波 王士同 《计算机科学与探索》 CSCD 北大核心 2023年第6期1441-1452,共12页
深度决策树迁移学习Boosting方法(DTrBoost)仅能适应一个源域与一个目标域的训练数据,无法适应多个不同分布的源域的样本。此外,DTrBoost方法同步地从源域中学习数据至目标域模型,并没有根据重要程度量化学习知识的权重。在实践中,对于... 深度决策树迁移学习Boosting方法(DTrBoost)仅能适应一个源域与一个目标域的训练数据,无法适应多个不同分布的源域的样本。此外,DTrBoost方法同步地从源域中学习数据至目标域模型,并没有根据重要程度量化学习知识的权重。在实践中,对于某数据集的数据按照某一或某些特征划分出来的数据往往分布不一致,并且这些不同分布的数据对于最终模型的重要性也不一致,知识迁移的权重也因此不平等。针对这一问题,提出了多源域优化权重的迁移学习方法,主要思想是根据不同分布的源域空间计算出到目标域的KL距离,利用KL距离的比值计算出不同分布的源域样本的学习权重比例,从而优化整体梯度函数,使学习方向朝着梯度下降最快的方向进行。使用梯度下降算法能使模型较快收敛,在确保迁移学习效果的同时,也能确保学习的速度。实验结果表明,提出的算法在整体上实现了更好的性能并且对于不同的训练数据能够实现自适应效果,分类错误率平均下降0.013,在效果最好的OCR数据集上下降0.030。 展开更多
关键词 深度决策树迁移学习Boosting方法(DTrBoost) 多源域迁移学习 KL距离 决策树
下载PDF
基于相似度的神经网络多源迁移学习算法 被引量:3
13
作者 张文田 凌卫新 《科学技术与工程》 北大核心 2019年第15期186-191,共6页
为了解决迁移学习中的"负迁移"问题,提出了基于相似度的神经网络多源迁移学习算法。该算法是以经典的BP神经网络模型为基分类器,利用梯度下降法对各个源领域与目标域之间的相似度进行学习和优化,把各个源领域的网络权重参数... 为了解决迁移学习中的"负迁移"问题,提出了基于相似度的神经网络多源迁移学习算法。该算法是以经典的BP神经网络模型为基分类器,利用梯度下降法对各个源领域与目标域之间的相似度进行学习和优化,把各个源领域的网络权重参数信息按照与目标域之间的相似程度迁移到目标域中,提高机器学习算法在目标域的分类性能。在UCI数据的Letter-recognition数据集以及20Newsgroups文本数据集上进行实验。实验结果表明了MTL-SNN算法比传统的多源迁移学习算法以及BP神经网络算法在分类准确率上有所提升,因此MTL-SNN算法有效地解决了"负迁移"问题。 展开更多
关键词 负迁移 相似度 多源迁移学习 BP神经网络
下载PDF
基于多源域深度迁移学习的舵机在线故障诊断 被引量:1
14
作者 吕丞辉 程进军 +2 位作者 胡阳光 文斌成 李剑峰 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第9期60-67,共8页
针对航空武器不同舵机轴承在不同负载力矩下呈现特征数据与工作状态映射关系难以定量表达,开展未知领域的状态识别是一条可行的技术路线;引入多源域深度迁移学习的思想,提出具有多核MMD的MSFAN故障诊断方法。采用傅里叶变换提取不同域... 针对航空武器不同舵机轴承在不同负载力矩下呈现特征数据与工作状态映射关系难以定量表达,开展未知领域的状态识别是一条可行的技术路线;引入多源域深度迁移学习的思想,提出具有多核MMD的MSFAN故障诊断方法。采用傅里叶变换提取不同域原始数据的时频域特征,通过多核MMD距离度量方式减小源域和目标域之间的特征分布差异;利用特定域分类器降低不同域对目标样本在类边界附近的分类损失,提高模型在目标域中的分类精度。试验分别采用公开轴承数据集作为源域数据,使用该方法对目标域数据进行状态识别,与Alxnet、Rexnet18等诊断算法相比,所提方法获得较好的转移性能,基本达到100%的故障识别率。 展开更多
关键词 舵机 轴承 多源域深度迁移学习 MSFAN 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部