期刊文献+

Multi-Domain Sentiment Classification with Classifier Combination 被引量:5

Multi-Domain Sentiment Classification with Classifier Combination
原文传递
导出
摘要 State-of-the-arts studies on sentiment classification are typically domain-dependent and domain-restricted. In this paper, we aim to reduce domain dependency and improve overall performance simultaneously by proposing an efficient multi-domain sentiment classification algorithm. Our method employs the approach of multiple classifier combination. In this approach, we first train single domain classifiers separately with domain specific data, and then combine the classifiers for the final decision. Our experiments show that this approach performs much better than both single domain classification approach (using the training data individually) and mixed domain classification approach (simply combining all the training data). In particular, classifier combination with weighted sum rule obtains an average error reduction of 27.6% over single domain classification. State-of-the-arts studies on sentiment classification are typically domain-dependent and domain-restricted. In this paper, we aim to reduce domain dependency and improve overall performance simultaneously by proposing an efficient multi-domain sentiment classification algorithm. Our method employs the approach of multiple classifier combination. In this approach, we first train single domain classifiers separately with domain specific data, and then combine the classifiers for the final decision. Our experiments show that this approach performs much better than both single domain classification approach (using the training data individually) and mixed domain classification approach (simply combining all the training data). In particular, classifier combination with weighted sum rule obtains an average error reduction of 27.6% over single domain classification.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2011年第1期25-33,共9页 计算机科学技术学报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.61003155 Start-Up Grant for Newly Appointed Professors under Grant No.1-BBZM in The Hong Kong Polytechnic University
关键词 sentiment classification multiple classifier system multi-domain learning sentiment classification, multiple classifier system, multi-domain learning
  • 相关文献

参考文献24

  • 1Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques, In Proc. EMNLP2002, Philadelphia, USA, Jnl. 7-12, 2002, pp.79-86. 被引量:1
  • 2Cui H, Mittal V, Datar M. Comparative experiments on sentiment classification for online product reviews. In Proc. AAAI2006, Boston, USA, Jul. 16-20, 2006, pp.1265-1270. 被引量:1
  • 3Kim S, Hovy E. Identifying opinion holders for question answering in opinion texts. In Proc. Workshop on Question Answering in Restricted Domains ( AAAI 2005), Pittsburgh, USA, Jul. 9-13, 2005, pp.100-107. 被引量:1
  • 4Ku L, Liang Y, Chen H. Opinion extraction, summarization and tracking in news and blog corpora. In Proc. the Spring Symposia on Computational Approaches to Analyzing Weblogs ( AA AI-CAA W 2006), Stanford University, USA, Mar. 27-29, 2006, pp.100-107. 被引量:1
  • 5Blitzer J, Dredze M, Pereira F. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proc. ACL 2007, Prague, Czech, Jun. 23-30, 2007, pp.440-447. 被引量:1
  • 6Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proc. ACL2002, Philadelphia, USA, Jul. 7-12, 2002, pp.417-424. 被引量:1
  • 7Zagibalov T, Carroll J. Automatic seed word selection for unsupervised sentiment classification of Chinese text. In Proc. COLING2008, Manchester, UK, Aug. 18-22, 2008, pp.1073- 1080. 被引量:1
  • 8Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proc. ACL2004, Barcelona, Spain, Jul. 21-26, 2004, pp.271- 278. 被引量:1
  • 9Riloff E, Patwardhan S, Wiebe J. Feature subsumption for opinion analysis. In Proc. EMNLP2006, Sydney, Australia, Jul. 22-23, 2006, pp.440-448. 被引量:1
  • 10McDonald R, Hannan K, Neylon T, Wells M, Reynar J. Structured models for fine-to-coarse sentiment analysis. In Proc. ACL 2007, Prague, Czech, Jun. 23-30, 2007, pp.432-439. 被引量:1

同被引文献41

  • 1方美玉,郑小林,陈德人,华艺,施艳.商品评论聚焦爬虫算法设计与实现[J].吉林大学学报(工学版),2012,42(S1):377-381. 被引量:10
  • 2俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:156
  • 3章毓晋.图像处理与分析[M].北京:清华大学出版社,1999.. 被引量:55
  • 4胡熠,陆汝占,李学宁,段建勇,陈玉泉.基于语言建模的文本情感分类研究[J].计算机研究与发展,2007,44(9):1469-1475. 被引量:23
  • 5知网[EB/OL].[2007-09-03].http://www.keenage.com. 被引量:3
  • 6WANG Su-ge, LI De-yu, SONG Xiao-lei, et al. A feature selection method based on improved fisher' s discriminant ratio for text senti- ment classification[ J ]. Expert Systems with Applications, 2011, 38(7) :8696-8702. 被引量:1
  • 7PANG B, LEE L. Opinion mining and sentiment analysis[ J]. Foun- dations and Trends in Information Retrieval, 2008,2 ( 1 ) : 1-135. 被引量:1
  • 8ZHAI Zhong-wu, XU Hua, KANG Ba-da, et al. Exploiting effective features for Chinese sentiment classification [ J ]. Expert Systems with Applications, 2011,38(8) :9139-9146. 被引量:1
  • 9HALL M, FRANK E, HOLMES G, et al. The WEKA data mining software: an update[J]. ACM SIGKDD Explorations Newsletter, 2009,11 (1) :10-18. 被引量:1
  • 10BISHOP C M. Neural networks for pattern recognition [ M ]. New York : Oxford University Press, 1995. 被引量:1

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部