A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and...A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.展开更多
Overlay networks have emerged as a useful approach to providing a general framework for new applications and services that are to be implemented without significantly changing the IP-layer network infrastructure.Overl...Overlay networks have emerged as a useful approach to providing a general framework for new applications and services that are to be implemented without significantly changing the IP-layer network infrastructure.Overlay routing has been used as an alternative to the default best effort Internet routing for the absence of end-to-end Quality of Service(QoS). While the former has recently been investigated, the conflict of QoS restraints and resource optimization remains unsolved. Recent studies have shown that overlay paths can give better latency, loss rate and TCP throughput. In this paper, a multi-dimensional QoS objective model based on the analysis of multiple QoS constraints has been presented, and a routing algorithm to optimise the overlay resource of its nodes and links is then proposed.In fact, the algorithm obtained multiple QoS values using probability theory to achieve the routing according to the multi-dimensional QoS objective vector of the QoS objective model. Simulation results reveals that the algorithm works better than other existing algorithms in balancing the network resources, and applications with stringent QoS requirements could be run.展开更多
针对海量机器类通信(massive machine type communication,mMTC)场景,以最大化系统吞吐量为目标,且在保证部分机器类通信设备(machine type communication device,MTCD)的服务质量(quality of service,QoS)要求前提下,提出两种基于Q学...针对海量机器类通信(massive machine type communication,mMTC)场景,以最大化系统吞吐量为目标,且在保证部分机器类通信设备(machine type communication device,MTCD)的服务质量(quality of service,QoS)要求前提下,提出两种基于Q学习的资源分配算法:集中式Q学习算法(team-Q)和分布式Q学习算法(dis-Q)。首先基于余弦相似度(cosine similarity,CS)聚类算法,考虑到MTCD地理位置和多级别QoS要求,构造代表MTCD和数据聚合器(data aggregator,DA)的多维向量,根据向量间CS值完成分组。然后分别利用team-Q学习算法和dis-Q学习算法为MTCD分配资源块(resource block,RB)和功率。吞吐量性能上,team-Q和dis-Q算法相较于动态资源分配算法、贪婪算法分别平均提高了16%、23%;复杂度性能上,dis-Q算法仅为team-Q算法的25%及以下,收敛速度则提高了近40%。展开更多
针对传统多变量时间序列预测方法未考虑变量间依赖关系从而影响预测效果的问题,提出了一种基于异常序列剔除的多变量时间序列预测算法.该算法旨在利用多维支持向量回归机(Multi-dimensional support vector regression,M-SVR)内在的结...针对传统多变量时间序列预测方法未考虑变量间依赖关系从而影响预测效果的问题,提出了一种基于异常序列剔除的多变量时间序列预测算法.该算法旨在利用多维支持向量回归机(Multi-dimensional support vector regression,M-SVR)内在的结构化输出特性,对选取到具有相似性的多个变量序列进行联合预测.首先,对已知序列进行基于模糊熵的层次聚类,实现对相似序列的初步划分;其次,求出类中所有序列的主曲线,根据序列到主曲线的距离计算各个序列的异常因子,从而进一步剔除聚类结果中的异常序列;最后,将选取到的相似变量序列作为输入,利用M-SVR进行预测.通过理论分析,证明本文算法在理论上存在信息损失上界与可靠度下界,从而说明本文算法的合理性与可行性.采用混沌时间序列数据与多个实际数据集进行对比实验,结果表明,与现有多个代表性方法相比,本文算法可有效挖掘多变量时间序列的内在结构信息,预测精度更高,数值稳定性更好.展开更多
基金National Science Foundation of China(Grant No.10772142)National Natural Science Key Foundation of China(Grant No.10832002)the Fundamental Research Funds for the Central Universities
文摘A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.
基金supported by the National Natural Science Foundation of China under Grant No.61071126the National Science and Technology Major Projects of New Generation Broadband Wireless Mobile Communication Network under Grants No.2010ZX0300400201,No.2010ZX03003-001,No.2010ZX03004-001-01,No.2011ZX03002-001-02
文摘Overlay networks have emerged as a useful approach to providing a general framework for new applications and services that are to be implemented without significantly changing the IP-layer network infrastructure.Overlay routing has been used as an alternative to the default best effort Internet routing for the absence of end-to-end Quality of Service(QoS). While the former has recently been investigated, the conflict of QoS restraints and resource optimization remains unsolved. Recent studies have shown that overlay paths can give better latency, loss rate and TCP throughput. In this paper, a multi-dimensional QoS objective model based on the analysis of multiple QoS constraints has been presented, and a routing algorithm to optimise the overlay resource of its nodes and links is then proposed.In fact, the algorithm obtained multiple QoS values using probability theory to achieve the routing according to the multi-dimensional QoS objective vector of the QoS objective model. Simulation results reveals that the algorithm works better than other existing algorithms in balancing the network resources, and applications with stringent QoS requirements could be run.
文摘针对海量机器类通信(massive machine type communication,mMTC)场景,以最大化系统吞吐量为目标,且在保证部分机器类通信设备(machine type communication device,MTCD)的服务质量(quality of service,QoS)要求前提下,提出两种基于Q学习的资源分配算法:集中式Q学习算法(team-Q)和分布式Q学习算法(dis-Q)。首先基于余弦相似度(cosine similarity,CS)聚类算法,考虑到MTCD地理位置和多级别QoS要求,构造代表MTCD和数据聚合器(data aggregator,DA)的多维向量,根据向量间CS值完成分组。然后分别利用team-Q学习算法和dis-Q学习算法为MTCD分配资源块(resource block,RB)和功率。吞吐量性能上,team-Q和dis-Q算法相较于动态资源分配算法、贪婪算法分别平均提高了16%、23%;复杂度性能上,dis-Q算法仅为team-Q算法的25%及以下,收敛速度则提高了近40%。
文摘针对传统多变量时间序列预测方法未考虑变量间依赖关系从而影响预测效果的问题,提出了一种基于异常序列剔除的多变量时间序列预测算法.该算法旨在利用多维支持向量回归机(Multi-dimensional support vector regression,M-SVR)内在的结构化输出特性,对选取到具有相似性的多个变量序列进行联合预测.首先,对已知序列进行基于模糊熵的层次聚类,实现对相似序列的初步划分;其次,求出类中所有序列的主曲线,根据序列到主曲线的距离计算各个序列的异常因子,从而进一步剔除聚类结果中的异常序列;最后,将选取到的相似变量序列作为输入,利用M-SVR进行预测.通过理论分析,证明本文算法在理论上存在信息损失上界与可靠度下界,从而说明本文算法的合理性与可行性.采用混沌时间序列数据与多个实际数据集进行对比实验,结果表明,与现有多个代表性方法相比,本文算法可有效挖掘多变量时间序列的内在结构信息,预测精度更高,数值稳定性更好.