期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM FOR BACK-PROPAGATION NEURAL NETWORKS 被引量:5
1
作者 Wei Wu Naimin Zhang +2 位作者 Zhengxue Li Long Li Yan Liu 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第4期613-623,共11页
In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. C... In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved. 展开更多
关键词 Back-propagation (BP) neural networks gradient method momentum Convergence.
原文传递
0515台风“卡努”影响浙江的强风分析 被引量:5
2
作者 曾欣欣 吕静 沈翊 《海洋预报》 2006年第4期13-20,共8页
本文对0515台风“卡努”登陆浙江后,强度减弱为强热带风暴,对影响浙江沿海海面及沿海地区的外围风速远强于近风暴中心风速进行了分析,分析结果表明:副热带高压的加强、对流层中下层急流的动量下传、高空较强的下沉气流和台风外围气压梯... 本文对0515台风“卡努”登陆浙江后,强度减弱为强热带风暴,对影响浙江沿海海面及沿海地区的外围风速远强于近风暴中心风速进行了分析,分析结果表明:副热带高压的加强、对流层中下层急流的动量下传、高空较强的下沉气流和台风外围气压梯度力迅猛增大的共同作用,是造成本次风暴外围风速远强于近风暴中心风速的重要原因。 展开更多
关键词 台风 急流 动量下传 下沉气流 气压梯度
下载PDF
引入动量因子的双自适应自然梯度算法 被引量:4
3
作者 李康 刘辉 罗彬 《湖南师范大学自然科学学报》 CAS 北大核心 2015年第1期54-57,共4页
为克服自然梯度算法收敛速度和稳态误差之间的矛盾,提出了一种引入动量因子的双自适应自然梯度算法,该算法将动量因子分别引入到自然梯度算法的步长因子和分离矩阵中,并根据实时分离度自适应调整动量因子,从而在加快算法收敛速度的同时... 为克服自然梯度算法收敛速度和稳态误差之间的矛盾,提出了一种引入动量因子的双自适应自然梯度算法,该算法将动量因子分别引入到自然梯度算法的步长因子和分离矩阵中,并根据实时分离度自适应调整动量因子,从而在加快算法收敛速度的同时,降低稳态误差.仿真实验证明,提出的新算法的性能明显优越与固定步长和自适应步长自然梯度算法. 展开更多
关键词 动量因子 分离度 自然梯度 收敛速度 稳态误差
下载PDF
PEPFL:A framework for a practical and efficient privacy-preserving federated learning
4
作者 Yange Chen Baocang Wang +3 位作者 Hang Jiang Pu Duan Yuan Ping Zhiyong Hong 《Digital Communications and Networks》 SCIE CSCD 2024年第2期355-368,共14页
As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and effic... As an emerging joint learning model,federated learning is a promising way to combine model parameters of different users for training and inference without collecting users’original data.However,a practical and efficient solution has not been established in previous work due to the absence of efficient matrix computation and cryptography schemes in the privacy-preserving federated learning model,especially in partially homomorphic cryptosystems.In this paper,we propose a Practical and Efficient Privacy-preserving Federated Learning(PEPFL)framework.First,we present a lifted distributed ElGamal cryptosystem for federated learning,which can solve the multi-key problem in federated learning.Secondly,we develop a Practical Partially Single Instruction Multiple Data(PSIMD)parallelism scheme that can encode a plaintext matrix into single plaintext for encryption,improving the encryption efficiency and reducing the communication cost in partially homomorphic cryptosystem.In addition,based on the Convolutional Neural Network(CNN)and the designed cryptosystem,a novel privacy-preserving federated learning framework is designed by using Momentum Gradient Descent(MGD).Finally,we evaluate the security and performance of PEPFL.The experiment results demonstrate that the scheme is practicable,effective,and secure with low communication and computation costs. 展开更多
关键词 Federated learning Partially single instruction multiple data momentum gradient descent ELGAMAL Multi-key Homomorphic encryption
下载PDF
基于改进卷积神经网络算法的违规作业行为检测 被引量:2
5
作者 赵连斌 张锋 杨辉 《电子设计工程》 2023年第21期141-145,共5页
为了提升电力生产环境下违规作业行为的检测效率,文中对卷积神经网络的相关理论进行了研究,将二维平面下的卷积、池化运算扩展到了三维空间(C3D),使得网络在特征提取时可以有效获取视频帧信息。借鉴Inception网络的思路,使用更小颗粒的... 为了提升电力生产环境下违规作业行为的检测效率,文中对卷积神经网络的相关理论进行了研究,将二维平面下的卷积、池化运算扩展到了三维空间(C3D),使得网络在特征提取时可以有效获取视频帧信息。借鉴Inception网络的思路,使用更小颗粒的卷积结构替代C3D网络中的大颗粒卷积运算,有效提升了网络的感知能力和非线性拟合能力。此外,还对传统的随机梯度下降(SGD)训练方式进行了改进,引入了一种基于分数阶动量的梯度下降法,该方法使用训练动量进行自适应训练调节,有效解决了SGD训练误差不稳定、容易陷入局部最优等缺点。以某供电公司安监部门采集的视频数据集为样本进行的性能测试结果表明,其识别精度可达92.25%,相较于普通C3D网络,识别精度提升了4.89%,训练时间下降了61.41%。 展开更多
关键词 卷积神经网络 C3D 分数阶动量 梯度下降 视频识别 违规判别
下载PDF
基于有动量和自适应lr梯度下降法BP神经网络的城市用电量预测技术 被引量:3
6
作者 邓子云 《江苏科技信息》 2018年第3期32-34,共3页
文章在标准BP(Back Propagation)神经网络算法的基础上,增加了动量和自适应来进行改进,给出了改进的公式和算法,并应用于城市用电量的预测工作。通过Matlab仿真可知训练效果良好,仿真的数据预测结果具有一定的实用参考价值。
关键词 动量 自适应 梯度下降 BP神经网络 城市用电量预测
下载PDF
稳定分层流动中湍流动量逆梯度输运的数值研究 被引量:3
7
作者 贾俊梅 邱翔 刘宇陆 《水动力学研究与进展(A辑)》 CSCD 北大核心 2005年第4期426-435,共10页
本文采用RSM模式数值研究了温度和盐度的分层流动中湍流动量的逆梯度输运现象,并把计算结果和已有的实验结果进行了比较。计算主要考虑了分层强度、剪切率以及温度和浓度分层对湍流动量逆梯度输运的影响。由计算结果表明:在非剪切的分... 本文采用RSM模式数值研究了温度和盐度的分层流动中湍流动量的逆梯度输运现象,并把计算结果和已有的实验结果进行了比较。计算主要考虑了分层强度、剪切率以及温度和浓度分层对湍流动量逆梯度输运的影响。由计算结果表明:在非剪切的分层流动中,温度分层,出现湍流动量的逆梯度输运。而盐度分层流动不出现湍流动量逆梯度输运现象。剪切分层流动中,剪切减小湍流动量的逆梯度输运。并且分层强度对温度分层比盐度分层影响大。 展开更多
关键词 分层流 动量输运 逆梯度 数值模拟
下载PDF
A Study on the Convergence of Gradient Method with Momentum for Sigma-Pi-Sigma Neural Networks 被引量:1
8
作者 Xun Zhang Naimin Zhang 《Journal of Applied Mathematics and Physics》 2018年第4期880-887,共8页
In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficien... In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficient is chosen in an adaptive manner, and the corresponding weak convergence and strong convergence results are proved. 展开更多
关键词 Sigma-Pi-Sigma NEURAL Network momentum TERM gradient Method CONVERGENCE
下载PDF
An Adaptive Momentum CMA Blind Equalization Based on Error Energy
9
作者 Ying Xiao Yuhua Dong Jinyu Sun 《International Journal of Communications, Network and System Sciences》 2017年第5期333-340,共8页
To solve the problem of large steady state residual error of momentum constant modulus algorithm (CMA) blind equalization, a momentum CMA blind equalization controlled by energy steady state was proposed. The energy o... To solve the problem of large steady state residual error of momentum constant modulus algorithm (CMA) blind equalization, a momentum CMA blind equalization controlled by energy steady state was proposed. The energy of the equalizer weights is estimated during the updating process. According to the adaptive filtering theory, the energy of the equalizer weights reaches to the steady state after the algorithm is converged, and then the momentum can be set to 0 when the energy change rate is less than the threshold, which can avoid the additional gradient noise caused by momentum and further improve the convergence precision of the algorithm. The proposed algorithm takes advantage of momentum to quicken the convergence rate and to avoid the local minimum in the cost function to some extent;meanwhile, it has the same convergence precision with CMA. Computer simulation results show that, compared with CMA, momentum CMA (MCMA) and adaptive momentum CMA (AMCMA) blind equalization, the proposed algorithm has the fastest convergence rate and the same steady state residual error with CMA. 展开更多
关键词 BLIND EQUALIZATION CMA momentum gradient Noise ENERGY STEADY State
下载PDF
Pressure Gradient, Power, and Energy of Vortices
10
作者 Jack Denur 《Open Journal of Fluid Dynamics》 2018年第2期216-247,共32页
We consider small vortices, such as tornadoes, dust devils, whirlpools, and small hurricanes at low latitudes, for which the Coriolis force can be neglected. Such vortices are (at least approximately) cylindrically sy... We consider small vortices, such as tornadoes, dust devils, whirlpools, and small hurricanes at low latitudes, for which the Coriolis force can be neglected. Such vortices are (at least approximately) cylindrically symmetrical about a vertical axis through the center of a calm central region or eye of radius . In the region fluid (gas or liquid) circulates about the eye with speed . We take to be the outer periphery of the vortex, where the fluid speed is reduced to that of the surrounding wind field (in the cases of tornadoes, dust devils, and small hurricanes at low latitudes) or deemed negligible (in the case of whirlpools). If , angular momentum is conserved within the fluid itself;if , angular momentum must be exchanged with Earth to ensure conservation of total angular momentum. We derive the steepness and upper limit of the pressure gradients in vortices. We then discuss the power and energy of vortices. We compare the kinetic energy of atmospheric vortices and the power required to maintain them against frictional dissipation with the same quantities for Earth’s atmosphere as a whole. We explain why the kinetic energy of atmospheric vortices must be replaced on much shorter timescales than is the case for Earth’s atmosphere as a whole. Brief comparisons of cyclostrophic flow with geostrophic and friction-balanced flows are then provided. We then consider an analogy that might be drawn, at least to some extent, with gravitational systems, considering mainly spherically-symmetrical and cylindrically-symmetrical ones. Generation of kinetic energy at the expense of potential energy in fluid vortices, in geostrophic and friction-balanced flows, and in gravitational systems is then briefly discussed. We explain the variations of pressure and gravitational gradients corresponding to generation of kinetic energy exceeding, equaling, and falling short of frictional dissipation. In the Appendix, we describe a simple method for maximizing power extraction from environmental fluid (air or water) flows. In summary 展开更多
关键词 Vortex Cyclostrophic FLOW Angular momentum Pressure gradient Geostrophic FLOW Friction-Balanced FLOW POWER ENERGY Gravity
下载PDF
基于异常行为数据流的加权铰链分类算法研究 被引量:1
11
作者 虎楠 郑建忠 郑建荣 《电力信息与通信技术》 2022年第6期122-127,共6页
为了能够快速检测、识别异常行为数据流,并对异常行为数据流的内容准确定位,通过研究决策树算法、逻辑回归算法、神经网络算法、铰链分类等深度学习算法的基础上,文章提出基于指数加权和动量的小批量梯度下降铰链分类算法。该算法在铰... 为了能够快速检测、识别异常行为数据流,并对异常行为数据流的内容准确定位,通过研究决策树算法、逻辑回归算法、神经网络算法、铰链分类等深度学习算法的基础上,文章提出基于指数加权和动量的小批量梯度下降铰链分类算法。该算法在铰链分类算法的基础上增加指数权值方法和动量梯度下降方法,指数加权方法可以实现对损失函数下滑速度的加快,即对异常行为数据流快速定位和识别;动量梯度下降方法可以实现对损失函数结果值进行动态偏差校正。通过该算法可以实现对异常行为数据流内容准确定位及快速识别,解决异常行为数据流内容识别的误报率和漏报率较高的问题,保障数据的安全性和完整性。通过仿真实验,利用计划长度比(schedule length ratio,SLR)、下降速度等指标分别验证,表明该算法的性能和收敛速度等方面都略高于其他铰链分类算法。 展开更多
关键词 异常行为数据流 铰链分类算法 加权 动量梯度 损失函数
下载PDF
Optical spiral vortex from azimuthally increasing/decreasing exponential phase gradients
12
作者 介珮桦 谢振威 袁小聪 《Chinese Optics Letters》 SCIE EI CAS CSCD 2023年第11期123-127,共5页
A new type of power-exponent-phase vortex-like beams with both quadratic and cubic azimuthal phase gradients is investigated in this work.The intensity and orbital angular momentum(OAM)density distributions are notice... A new type of power-exponent-phase vortex-like beams with both quadratic and cubic azimuthal phase gradients is investigated in this work.The intensity and orbital angular momentum(OAM)density distributions are noticeably different when the phase gradient increases or decreases along the azimuth angle,while the orthogonality and total OAM remain constant.The characteristics of the optical field undergo a significant change when the phase shifts from linear to nonlinear,with the variation of the power index having little impact on the beam characteristics under nonlinear phase conditions.These characteristics provide new ideas for applications such as particle manipulation,optical communications,and OAM encryption. 展开更多
关键词 optical vortex orbital angular momentum optical spiral azimuthally varying phase gradient
原文传递
The Momentum Turbulent Counter-Gradient Transport in Jet-like Flows
13
作者 V.N.Lykossov 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第2期191-200,共10页
Ⅰ. INTRODUCTIONIt is very well known from the observations that some atmospheric motions are accompanied by jets in the boundary layer, for example, breezes and circulations in the mountain valleys (Gutman, 1969); n... Ⅰ. INTRODUCTIONIt is very well known from the observations that some atmospheric motions are accompanied by jets in the boundary layer, for example, breezes and circulations in the mountain valleys (Gutman, 1969); nocturnal increasing of wind (Byzova et al., 1989); cross-equatorial flow during the summer Indian monsoon (Das, 1986) and others. One of the important questions concerning a mathematical modelling of such motions is the problem of the turbulent closure of the equations set which describes the jet dynamics. It is still popular to use for the momentum turbulent flow (u'w') a closure, based within the framework of K-theory on the Boussinesq hypothesis 展开更多
关键词 The momentum Turbulent Counter-gradient Transport in Jet-like Flows
下载PDF
Research on three-step accelerated gradient algorithm in deep learning
14
作者 Yongqiang Lian Yincai Tang Shirong Zhou 《Statistical Theory and Related Fields》 2022年第1期40-57,共18页
Gradient descent(GD)algorithm is the widely used optimisation method in training machine learning and deep learning models.In this paper,based on GD,Polyak’s momentum(PM),and Nesterov accelerated gradient(NAG),we giv... Gradient descent(GD)algorithm is the widely used optimisation method in training machine learning and deep learning models.In this paper,based on GD,Polyak’s momentum(PM),and Nesterov accelerated gradient(NAG),we give the convergence of the algorithms from an ini-tial value to the optimal value of an objective function in simple quadratic form.Based on the convergence property of the quadratic function,two sister sequences of NAG’s iteration and par-allel tangent methods in neural networks,the three-step accelerated gradient(TAG)algorithm is proposed,which has three sequences other than two sister sequences.To illustrate the perfor-mance of this algorithm,we compare the proposed algorithm with the three other algorithms in quadratic function,high-dimensional quadratic functions,and nonquadratic function.Then we consider to combine the TAG algorithm to the backpropagation algorithm and the stochastic gradient descent algorithm in deep learning.For conveniently facilitate the proposed algorithms,we rewite the R package‘neuralnet’and extend it to‘supneuralnet’.All kinds of deep learning algorithms in this paper are included in‘supneuralnet’package.Finally,we show our algorithms are superior to other algorithms in four case studies. 展开更多
关键词 Accelerated algorithm backpropagation deep learning learning rate momentum stochastic gradient descent
原文传递
Gradient Transformation of Momentum and Single-Valued Vector Potential in Nonrelativistic Dynamics
15
作者 Illia Dubrovskyi 《Journal of Physical Science and Application》 2014年第5期328-332,共5页
A vector potential of a magnetic field in Lagrangian is defined as the necessary partial solution of a inhomogeneous differential equation. The "gradient transformation" is an addition of arbitrary general solution ... A vector potential of a magnetic field in Lagrangian is defined as the necessary partial solution of a inhomogeneous differential equation. The "gradient transformation" is an addition of arbitrary general solution of the corresponding homogeneous equation that does not change the Lagrange equations. When dynamics is described by momenta and coordinates, this transformation is not the vector potential modification, which does not change expressions for other physical quantities, but a canonical transformation of momentum, which changes expressions for all fimctions of momentum, not changing the Poisson brackets, and, hence, the integrals of motion. The generating function of this transformation must reverse sign under the time-charge reversal. In quantum mechanics the unitary transformation corresponds to this canonical transformation. It also does not change the commutation relations. The phase of this unitary operator also must reverse sign under the time-charge reversal. Examples of necessary vector potentials for some magnetic fields are presented. 展开更多
关键词 Magnetic field vector potential momentum gradient transformation canonical transformation unitary transformation.
下载PDF
一种基于改进BP神经网络的PCA人脸识别算法 被引量:50
16
作者 李康顺 李凯 张文生 《计算机应用与软件》 CSCD 北大核心 2014年第1期158-161,共4页
人脸识别作为模式识别领域的热点研究问题受到了广泛的关注。传统BP算法虽然具有自学习、自适应以及强大的非线性映射能力并且在人脸图像识别准确率上占有很大的优势,但算法具有收敛缓慢、训练过程振荡、易陷入局部极小点等缺点。针对传... 人脸识别作为模式识别领域的热点研究问题受到了广泛的关注。传统BP算法虽然具有自学习、自适应以及强大的非线性映射能力并且在人脸图像识别准确率上占有很大的优势,但算法具有收敛缓慢、训练过程振荡、易陷入局部极小点等缺点。针对传统BP算法的不足提出一种基于改进BP神经网络的PCA人脸识别算法,该算法采用PCA算法提取图像的主要特征,并结合一种新的权值调整方法改进BP算法进行图像分类识别。仿真实验表明,通过使用该算法对ORL人脸数据库的图像进行识别,其结果比传统算法具有更快的收敛速度和更高的识别率。 展开更多
关键词 人脸识别 主成分分析rBP神经网络 附加动量 弹性梯度下降法
下载PDF
基于反卷积特征提取的深度卷积神经网络学习 被引量:19
17
作者 吕恩辉 王雪松 程玉虎 《控制与决策》 EI CSCD 北大核心 2018年第3期447-454,共8页
在深度卷积神经网络的学习过程中,卷积核的初始值通常是随机赋值的.另外,基于梯度下降法的网络参数学习法通常会导致梯度弥散现象.鉴于此,提出一种基于反卷积特征提取的深度卷积神经网络学习方法.首先,采用无监督两层堆叠反卷积神经网... 在深度卷积神经网络的学习过程中,卷积核的初始值通常是随机赋值的.另外,基于梯度下降法的网络参数学习法通常会导致梯度弥散现象.鉴于此,提出一种基于反卷积特征提取的深度卷积神经网络学习方法.首先,采用无监督两层堆叠反卷积神经网络从原始图像中学习得到特征映射矩阵;然后,将该特征映射矩阵作为深度卷积神经网络的卷积核,对原始图像进行逐层卷积和池化操作;最后,采用附加动量系数的小批次随机梯度下降法对深度卷积网络微调以避免梯度弥散问题.在MNIST、CIFAR-10和CIFAR-100数据集上的实验结果表明,所提出方法可有效提高图像分类精度. 展开更多
关键词 反卷积神经网络 卷积神经网络 卷积核 动量系数 小批次随机梯度下降
原文传递
基于变步长动量梯度下降法的姿态解算算法 被引量:11
18
作者 张帅华 郑芳 +1 位作者 李霞 王丙元 《电光与控制》 CSCD 北大核心 2020年第9期66-70,111,共6页
针对基于MEMS的姿态测量系统因为存在误差而导致姿态解算漂移的问题,提出一种基于变步长动量梯度下降的姿态解算算法。该算法从传感器数据去噪和姿态解算两部分提高姿态解算精度。在传感器数据去噪方面,为了工程实用,降低微处理器计算量... 针对基于MEMS的姿态测量系统因为存在误差而导致姿态解算漂移的问题,提出一种基于变步长动量梯度下降的姿态解算算法。该算法从传感器数据去噪和姿态解算两部分提高姿态解算精度。在传感器数据去噪方面,为了工程实用,降低微处理器计算量,提出一种改进递推限幅均值滤波算法;在姿态解算方面,在梯度下降法的基础上设计自适应步长,使用动量梯度优化每次迭代方向,使得每次迭代后误差最小,同时使用动态限幅滤波抑制角度振荡。静态和动态实验结果均表明了所提算法的有效性和优越性。 展开更多
关键词 姿态解算 动量梯度下降法 变步长 改进递推均值滤波 动态限幅滤波 四元数
下载PDF
MLP神经网络在子宫颈细胞图像识别中的应用 被引量:6
19
作者 何苗 全宇 +2 位作者 李建华 付志民 周宝森 《中国卫生统计》 CSCD 北大核心 2006年第4期293-296,共4页
目的探讨MLP神经网络在宫颈细胞图像识别中的应用。方法将测量的子宫颈细胞和细胞核的27个特征量作为MLP神经网络的输入参数,利用软件STATISTICA7.0建立网络模型,使用四种不同的算法训练网络,对700个子宫颈细胞进行分类识别,使用VC++.NE... 目的探讨MLP神经网络在宫颈细胞图像识别中的应用。方法将测量的子宫颈细胞和细胞核的27个特征量作为MLP神经网络的输入参数,利用软件STATISTICA7.0建立网络模型,使用四种不同的算法训练网络,对700个子宫颈细胞进行分类识别,使用VC++.NET语言模拟调用网络。结果在四种算法中,使用共轭梯度法训练的MLP神经网络学习63次后,训练集识别率为98.67%,测试集识别率达到94.44%。不同算法的MLP神经网络的输入参数的敏感度排序均与细胞病理学特征基本一致。结论使用共轭梯度法训练的MLP神经网络可以较好地对宫颈细胞特征进行分类识别,在计算机辅助诊断方面具有广阔的应用前景。 展开更多
关键词 MLP神经网络 BP 动量项 共轭梯度法
下载PDF
基于动量梯度下降的自适应干扰对消算法 被引量:8
20
作者 杨启伦 张续莹 +1 位作者 李含超 杜冶 《电子信息对抗技术》 北大核心 2022年第2期30-32,共3页
在同时同频收发系统中,发射信号会泄露到接收通道导致有用的接收信号被淹没。针对同时同频收发系统干扰对消的需求,在传统随机梯度算法的基础上,研究动量梯度下降算法。该方法将历史梯度信息进行指数衰减和平滑,再结合当前梯度估计来更... 在同时同频收发系统中,发射信号会泄露到接收通道导致有用的接收信号被淹没。针对同时同频收发系统干扰对消的需求,在传统随机梯度算法的基础上,研究动量梯度下降算法。该方法将历史梯度信息进行指数衰减和平滑,再结合当前梯度估计来更新权重系数,可以解决噪声引起梯度估计的大小和方向不准确从而导致收敛速度慢的困难。最后通过仿真证明本方法具有比传统随机梯度算法更好的收敛性能。 展开更多
关键词 同时同频收发系统 自适应干扰对消 动量梯度下降 历史梯度信息 收敛速度
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部