期刊文献+

MLP神经网络在子宫颈细胞图像识别中的应用 被引量:6

The Application of MLP Neural Network in Image Diagnosis of Cervix Cell
下载PDF
导出
摘要 目的探讨MLP神经网络在宫颈细胞图像识别中的应用。方法将测量的子宫颈细胞和细胞核的27个特征量作为MLP神经网络的输入参数,利用软件STATISTICA7.0建立网络模型,使用四种不同的算法训练网络,对700个子宫颈细胞进行分类识别,使用VC++.NET语言模拟调用网络。结果在四种算法中,使用共轭梯度法训练的MLP神经网络学习63次后,训练集识别率为98.67%,测试集识别率达到94.44%。不同算法的MLP神经网络的输入参数的敏感度排序均与细胞病理学特征基本一致。结论使用共轭梯度法训练的MLP神经网络可以较好地对宫颈细胞特征进行分类识别,在计算机辅助诊断方面具有广阔的应用前景。 Objective To explore the application of MLP neural network in image diagnoses of cervix cells. Methods Twenty - seven characteristic parameters of cervices cells and karyon were measured and used as input parameters in the MLP neural network. STATISTICA 7.0 was used to build up the network model, four methods were used to train the network model, seven hundred cervix cells were diagnosed in the network model, and VC + + . NET was used to call the network model. Resuits After MLP neural network was trained 63 times by conjugate gradient method selected among the four methods, diagnosis accuracy of training set was 98.67 % and diagnosis accuracy of testing set was 94.44 % Sensitivities order of input parameters in the MLP neural network of different methods was approximately in accordance with characters of cell pathology. Conclusion Cervix cells can be classified and diagnosed well by MLP neural network which is trained by conjugate gradient method, MLP neural network shows its great significance in computer aided diagnosis.
出处 《中国卫生统计》 CSCD 北大核心 2006年第4期293-296,共4页 Chinese Journal of Health Statistics
基金 辽宁省教育厅科研资助项目(202013137 05L534)
关键词 MLP神经网络 BP 动量项 共轭梯度法 MLP neural network, BP, Momentum, Conjugate gradient method
  • 相关文献

参考文献7

  • 1Coleman MP,Esteve J,Damiecki P,et al.,Trends in cancer incidence and mortality.Lyon:IARC Press,1993. 被引量:1
  • 2Swerdlow AJ,Silva IS,Reld A,et al.,Trends in cancer incidence and mortality in Scotland:description and possible explanations.British J Cancer,1998,77(3 Suppl):1-16. 被引量:1
  • 3Howell LP,Davis RL,Belk TL,et al.,The autocyte preparation system for gyneclolgic cytology.Acta Cytol,1998,42(1):171-177. 被引量:1
  • 4Martin Schumacher,Werner Vach,Reinhard Robnr.Neural Networks and Logostoc Regression:Part 1.Comp Stat Data Analy,1996,21:661-682. 被引量:1
  • 5萧蔚,张韶峰等编著..Visual C++.NET编程方法与技巧[M].北京:电子工业出版社,2002:370.
  • 6Charalambous C.Conjugate Gradient Algorithm for Efficient Training of Artificial Neural Networks.IEEE Proceedings,1992,139(3):301-310. 被引量:1
  • 7王莹,卞美璐主编..液基薄层宫颈细胞学图谱[M].北京:科学技术文献出版社,2004:121.

同被引文献44

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部