The expected water mixing process between Red/Dead Sea water during the proposed conveyance projects is the main target of this research. The project will ensue transporting Red Sea water to recover and maintain certa...The expected water mixing process between Red/Dead Sea water during the proposed conveyance projects is the main target of this research. The project will ensue transporting Red Sea water to recover and maintain certain level of the Dead Sea, mostly will reach <span><span><span style="font-family:;" "=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span></span></span></span><span style="font-family:;" "="">395</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">m. It is found that, the two different water bodies with different EC values or different densities (salinities) are relatively divided by stable plane. This plane is defined as the BARZACH PLANE. In this study, the mixing process occurred between the Red Sea with the Dead Sea waters, located at 20</span><span style="font-family:;" "="">% </span><span style="font-family:;" "="">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">24% of the Dead Sea column depth based on the Barzach Plane level. During a laboratory experimental work, it is found that the mixed Red/Dead Sea water evaporates in a high rate until certain level where the solution attains oversaturated conditions with different dissolved solids. At this stage, a thin layer of solids suddenly formed and floated at the surface of the dense brine. The salinity of the captured water is so dense that floated salt layer cannot be dissolved. In addition, the formed floated salt layer at the surface prevents the below captured water to evaporate and at this stage, stalactites start to form until the excess dissolved solids are not oversaturated with any mineral.</span>展开更多
Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than ...Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than a climate model grid and a model tends to produce false ocean mixing when brine drainage is averaged over a grid cell. A two-column ocean grid (TCOG) scheme was implemented in the Community Earth System Model (CESM) using coupled sea ice-ocean model setting to explicitly solve the different vertical mixing in the two sub- columns of one model grid with and without brine rejection. The fraction of grid with brine rejection was tested to be equal to the lead fraction or a small constant number in a series of sensitivity model runs forced by the same atmospheric data from 1978 to 2009. The model results were compared to observations from 29 ice tethered profilers (ITP) in the Arctic Ocean Basin from 2004 to 2009. Compared with the control run using a regular ocean grid, the TCOG simulations showed consistent reduction of model errors in salinity and mixed layer depth (MLD). The model using a small constant fraction grid for brine rejection was found to produce the best model comparison with observations, indicating that the horizontal scale of the brine drainage is very small compared to the sea ice cover and even smaller than the lead fraction. Comparable to models using brine rejection parameterization schemes, TCOG achieved more improvements in salinity but similar in MLD.展开更多
文摘The expected water mixing process between Red/Dead Sea water during the proposed conveyance projects is the main target of this research. The project will ensue transporting Red Sea water to recover and maintain certain level of the Dead Sea, mostly will reach <span><span><span style="font-family:;" "=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span></span></span></span><span style="font-family:;" "="">395</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">m. It is found that, the two different water bodies with different EC values or different densities (salinities) are relatively divided by stable plane. This plane is defined as the BARZACH PLANE. In this study, the mixing process occurred between the Red Sea with the Dead Sea waters, located at 20</span><span style="font-family:;" "="">% </span><span style="font-family:;" "="">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">24% of the Dead Sea column depth based on the Barzach Plane level. During a laboratory experimental work, it is found that the mixed Red/Dead Sea water evaporates in a high rate until certain level where the solution attains oversaturated conditions with different dissolved solids. At this stage, a thin layer of solids suddenly formed and floated at the surface of the dense brine. The salinity of the captured water is so dense that floated salt layer cannot be dissolved. In addition, the formed floated salt layer at the surface prevents the below captured water to evaporate and at this stage, stalactites start to form until the excess dissolved solids are not oversaturated with any mineral.</span>
文摘Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than a climate model grid and a model tends to produce false ocean mixing when brine drainage is averaged over a grid cell. A two-column ocean grid (TCOG) scheme was implemented in the Community Earth System Model (CESM) using coupled sea ice-ocean model setting to explicitly solve the different vertical mixing in the two sub- columns of one model grid with and without brine rejection. The fraction of grid with brine rejection was tested to be equal to the lead fraction or a small constant number in a series of sensitivity model runs forced by the same atmospheric data from 1978 to 2009. The model results were compared to observations from 29 ice tethered profilers (ITP) in the Arctic Ocean Basin from 2004 to 2009. Compared with the control run using a regular ocean grid, the TCOG simulations showed consistent reduction of model errors in salinity and mixed layer depth (MLD). The model using a small constant fraction grid for brine rejection was found to produce the best model comparison with observations, indicating that the horizontal scale of the brine drainage is very small compared to the sea ice cover and even smaller than the lead fraction. Comparable to models using brine rejection parameterization schemes, TCOG achieved more improvements in salinity but similar in MLD.