Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of airc...Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.展开更多
背景:近年来,许多研究证实类装配体可弥补类器官无法完全重现细胞与细胞、细胞与基质间的互作关系的缺点,但处于发展初期的类装配体构建方式种类繁多,更无统一标准。目的:综述目前类装配体的构建方法、应用和优缺点,为促进体外细胞模型...背景:近年来,许多研究证实类装配体可弥补类器官无法完全重现细胞与细胞、细胞与基质间的互作关系的缺点,但处于发展初期的类装配体构建方式种类繁多,更无统一标准。目的:综述目前类装配体的构建方法、应用和优缺点,为促进体外细胞模型的发展和完善提供指导。方法:以“assembloids,organoids,tumor microenvironment,organoids AND assemble,organoids AND microenvironment”为英文检索词,以“类装配体、类器官、类组装体、肿瘤微环境、类器官重组、多细胞模型”为中文检索词,检索PubMed、中国知网及万方数据库,在排除无关文章及去重后筛选出94篇文章进行综述。结果与结论:①根据细胞来源的不同,可将类装配体的构建方法分为自体组装、直接组装及混合组装3种;根据细胞培养方式的差异,又可分为悬浮培养法、“基质”培养法、器官芯片培养法和3D生物打印法。②自体组装过程涵盖细胞和组织的发育等早期过程,因此,在器官发育和发育障碍等领域有广阔的前景,而分化成熟细胞的功能相对较完善,由它们直接组装成的类装配体在功能障碍及细胞损伤性疾病的研究中更具潜力;自体组装或在器官移植方面更胜一筹,直接组装将更适用于组织损伤的修复,混合组装综合了前两者的优势,多用于探索微环境中细胞的生理和病理机制以及药物筛选等领域。③虽然不同的类装配体各具优势,但都面临脉管系统不完善的难题;每种类装配体构建方法也存在各自的局限性,如自体组装形成的类装配体中细胞分化程度与体内的差异,直接组装模型的细胞种类固定、无法完全反映复杂的体内微环境等均是亟待解决的难题。④将来随着类装配体培养技术的不断完善,研究者们可以在体外组装出具有更复杂组织结构的仿生类器官,为研究人类组织和器官生理及病理过程提供无限趋近真实的模展开更多
Proton exchange membrane water electrolysis(PEMWE)plays a critical role in practical hydrogen production.Except for the electrode activities,the widespread deployment of PEMWE is severely obstructed by the poor electr...Proton exchange membrane water electrolysis(PEMWE)plays a critical role in practical hydrogen production.Except for the electrode activities,the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer(CL)and the inefficient transport structure.In this work,the PEDOT:F(Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid)ionomers with mixed proton-electron conductor(MPEC)were fabricated,which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface.The PEDOT:F exhibits strong perfluorosulfonic acid(PFSA)side chain extensibility,enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks,thus contributing to the surface reactant water adsorption.The PEMWE device employing membrane electrode assembly(MEA)prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 V under a water-splitting current of 2 A cm^(-2)(1.746 V at 2A cm^(-2) for MEA prepared by Nafion D520),along with exceptional long-term stability.Meanwhile,the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance,which is reduced by 23.4%and 17.6%at 0.1 A cm^(-2) and 1.5 A cm^(-2),respectively,as compared to the MEA prepared by D520.The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F,coupled with its remarkable structural stability.This characteristic enables expeditious mass transfer during electrolytic reactions,thereby enhancing the performance of PEMWE devices.展开更多
Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal cata...Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal catalysts,especially iridium(Ir)based materials for the energy-demanding oxygen evolution reaction(OER).Herein,we report a new sequential precipitation approach to the synthesis of mixed Ir-nickel(Ni)oxy-hydroxide supported on antimony-doped tin oxide(ATO)nanoparticles(IrNiyO_(x)/ATO,20 wt.%(Ir+Ni),y=0,1,2,and 3),aiming to reduce the utilisation of scarce and precious Ir while maintaining its good acidic OER performance.When tested in strongly acidic electrolyte(0.1 M HClO_(4)),the optimised IrNi1Ox/ATO shows a mass activity of 1.0 mAµgIr^(−1) and a large turnover frequency of 123 s^(−1) at an overpotential of 350 mV,as well as a comparatively small Tafel slope of 50 mV dec^(−1),better than the IrOx/ATO control,particularly with a markedly reduced Ir loading of only 19.7µgIr cm^(−2).Importantly,IrNi1O_(x)/ATO also exhibits substantially better catalytic stability than other reference catalysts,able to continuously catalyse acidic OER at 10 mA cm^(−2) for 15 h without obvious degradation.Our in-situ synchrotron-based x-ray absorption spectroscopy confirmed that the Ir^(3+)/Ir^(4+)species are the active sites for the acidic OER.Furthermore,the performance of IrNi1Ox/ATO was also preliminarily evaluated in a membrane electrode assembly,which shows better activity and stability than other reference catalysts.The IrNi1Ox/ATO reported in this work is a promising alternative to commercial IrO_(2) based catalysts for PEM electrolysis.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
The typemixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization mo...The typemixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization model for this problem is formulated to hedge against uncertainty. Moreover, the counterpart of the robust optimization model is developed by duality. A hybrid genetic algorithm (HGA) is proposed to solve this problem. In this algorithm, a heuristic method is utilized to seed the initial population. In addition, an adaptive local search procedure and a discrete Levy flight are hybridized with the genetic algorithm (GA) to enhance the performance of the algorithm. The effectiveness of the HGA is tested on a set of benchmark instances. Furthermore, the effect of uncertainty parameters on production efficiency is also investigated.展开更多
基金supported by National Defence Basic Research Foundation of China (Grant No. B1420060173)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z138)
文摘Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.
文摘背景:近年来,许多研究证实类装配体可弥补类器官无法完全重现细胞与细胞、细胞与基质间的互作关系的缺点,但处于发展初期的类装配体构建方式种类繁多,更无统一标准。目的:综述目前类装配体的构建方法、应用和优缺点,为促进体外细胞模型的发展和完善提供指导。方法:以“assembloids,organoids,tumor microenvironment,organoids AND assemble,organoids AND microenvironment”为英文检索词,以“类装配体、类器官、类组装体、肿瘤微环境、类器官重组、多细胞模型”为中文检索词,检索PubMed、中国知网及万方数据库,在排除无关文章及去重后筛选出94篇文章进行综述。结果与结论:①根据细胞来源的不同,可将类装配体的构建方法分为自体组装、直接组装及混合组装3种;根据细胞培养方式的差异,又可分为悬浮培养法、“基质”培养法、器官芯片培养法和3D生物打印法。②自体组装过程涵盖细胞和组织的发育等早期过程,因此,在器官发育和发育障碍等领域有广阔的前景,而分化成熟细胞的功能相对较完善,由它们直接组装成的类装配体在功能障碍及细胞损伤性疾病的研究中更具潜力;自体组装或在器官移植方面更胜一筹,直接组装将更适用于组织损伤的修复,混合组装综合了前两者的优势,多用于探索微环境中细胞的生理和病理机制以及药物筛选等领域。③虽然不同的类装配体各具优势,但都面临脉管系统不完善的难题;每种类装配体构建方法也存在各自的局限性,如自体组装形成的类装配体中细胞分化程度与体内的差异,直接组装模型的细胞种类固定、无法完全反映复杂的体内微环境等均是亟待解决的难题。④将来随着类装配体培养技术的不断完善,研究者们可以在体外组装出具有更复杂组织结构的仿生类器官,为研究人类组织和器官生理及病理过程提供无限趋近真实的模
基金supported by the National Natural Science Foundation of China(52202009)Key Research and Development Program of Guangdong Province(2020B0909040001)+1 种基金Key R&D project of Hubei Province,China(2021AAA006)Guangdong Hydrogen Energy Institute of WHUT under Guangdong Key Areas Research and Development Program(2019B090909003).
文摘Proton exchange membrane water electrolysis(PEMWE)plays a critical role in practical hydrogen production.Except for the electrode activities,the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer(CL)and the inefficient transport structure.In this work,the PEDOT:F(Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid)ionomers with mixed proton-electron conductor(MPEC)were fabricated,which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface.The PEDOT:F exhibits strong perfluorosulfonic acid(PFSA)side chain extensibility,enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks,thus contributing to the surface reactant water adsorption.The PEMWE device employing membrane electrode assembly(MEA)prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 V under a water-splitting current of 2 A cm^(-2)(1.746 V at 2A cm^(-2) for MEA prepared by Nafion D520),along with exceptional long-term stability.Meanwhile,the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance,which is reduced by 23.4%and 17.6%at 0.1 A cm^(-2) and 1.5 A cm^(-2),respectively,as compared to the MEA prepared by D520.The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F,coupled with its remarkable structural stability.This characteristic enables expeditious mass transfer during electrolytic reactions,thereby enhancing the performance of PEMWE devices.
基金supported by the National Innovation Agency of Portugal through the project Baterias 2030(Grant No.POCI-01-0247-FEDER-046109)J R E would like to acknowledge the Fundación General CSIC’s ComFuturo programme which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.101034263+2 种基金The authors appreciate Dr Laura Simonelli and Dr Vlad Martin Diaconescu for their assistance in XAS measurements at the beamline BL22-CLÆSS,ALBA synchrotron(experiment AV-2022025706)R M is grateful to the Portuguese Foundation for Science and Technology(FCT)for the doctoral grant(Grant No.2021.06496.BD)R M and A M are grateful for the financial support from:LA/P/0045/2020,UIDB/00511/2020 and UIDP/00511/2020,funded by the national funds through FCT/MCTES(PIDDAC)。
文摘Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal catalysts,especially iridium(Ir)based materials for the energy-demanding oxygen evolution reaction(OER).Herein,we report a new sequential precipitation approach to the synthesis of mixed Ir-nickel(Ni)oxy-hydroxide supported on antimony-doped tin oxide(ATO)nanoparticles(IrNiyO_(x)/ATO,20 wt.%(Ir+Ni),y=0,1,2,and 3),aiming to reduce the utilisation of scarce and precious Ir while maintaining its good acidic OER performance.When tested in strongly acidic electrolyte(0.1 M HClO_(4)),the optimised IrNi1Ox/ATO shows a mass activity of 1.0 mAµgIr^(−1) and a large turnover frequency of 123 s^(−1) at an overpotential of 350 mV,as well as a comparatively small Tafel slope of 50 mV dec^(−1),better than the IrOx/ATO control,particularly with a markedly reduced Ir loading of only 19.7µgIr cm^(−2).Importantly,IrNi1O_(x)/ATO also exhibits substantially better catalytic stability than other reference catalysts,able to continuously catalyse acidic OER at 10 mA cm^(−2) for 15 h without obvious degradation.Our in-situ synchrotron-based x-ray absorption spectroscopy confirmed that the Ir^(3+)/Ir^(4+)species are the active sites for the acidic OER.Furthermore,the performance of IrNi1Ox/ATO was also preliminarily evaluated in a membrane electrode assembly,which shows better activity and stability than other reference catalysts.The IrNi1Ox/ATO reported in this work is a promising alternative to commercial IrO_(2) based catalysts for PEM electrolysis.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
文摘The typemixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization model for this problem is formulated to hedge against uncertainty. Moreover, the counterpart of the robust optimization model is developed by duality. A hybrid genetic algorithm (HGA) is proposed to solve this problem. In this algorithm, a heuristic method is utilized to seed the initial population. In addition, an adaptive local search procedure and a discrete Levy flight are hybridized with the genetic algorithm (GA) to enhance the performance of the algorithm. The effectiveness of the HGA is tested on a set of benchmark instances. Furthermore, the effect of uncertainty parameters on production efficiency is also investigated.