As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions ...As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.展开更多
Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the...Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).展开更多
基金co-supported by the Natural Science Foundation of China(No.61833016)the Shaanxi Out-standing Youth Science Foundation(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038).
文摘As a payload support system deployed on satellites,the turntable system is often switched among different working modes during the on-orbit operation,which can experience great state changes.In each mode,the missions to be completed are different,consecutive and non-over-lapping,from which the turntable system can be considered to be a phased-mission system(PMS).Reliability analysis for PMS has been widely studied.However,the system mode cycle characteristic has not been taken into account before.In this paper,reliability analysis method of the satellite turntable system is proposed considering its multiple operation modes and mode cycle characteristic.Firstly,the multi-valued decision diagrams(MDD)manipulation rules between two adjacent mission cycles are proposed.On this basis,MDD models for the turntable system in different states are established and the reliability is calculated using the continuous time Markov chains(CTMC)method.Finally,the comparative study is carried out to show the effectiveness of our proposed method.
基金supported by the Aeronautical Science Foundation of China (No. 05D01002)
文摘Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).