We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161...We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.展开更多
GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed r...GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.展开更多
基金Japan Science and Technology Agency(JST)Japan Agency for Medical Research and Development(AMED)
文摘We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.
文摘GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.