摘要
基于金属有机物化学气相沉积(MOCVD)技术实现了室温连续(CW)输出功率达到瓦级的中波红外量子级联激光器(QCL)。通过MOCVD生长条件优化,实现了高界面质量双声子共振结构材料生长,制备出室温CW功率最高为1.21 W的4.6μm QCL。具体研究了基于生长的30和40级有源区材料所制备器件的性能,探究了不同级数对器件性能的影响。相比于30级有源区器件,40级有源区器件单位面积等效输出功率没有明显提升,但器件性能随温度的升高迅速下降,这归因于更加显著的热积累效应和外延材料变厚导致的质量恶化。因此,在通过增加有源区级数提升器件功率时,需要充分考虑有源级数、热积累和材料生长质量等因素之间的平衡。MOCVD是半导体材料产业界普遍采用的技术,本研究工作对于提升QCL材料制备效率、推进QCL技术产业化应用具有重要意义。
Based on the metal organic chemical vapor deposition(MOCVD)technology,we designed a midwave infrared quantum cascade laser(QCL)with continuouswave(CW)and wattlevel output powers at room temperature.By optimizing MOCVD growth conditions,we obtained doublephonon resonance(DPR)materials with a highquality interface and prepared a 4.6μm QCL with a maximum CW output power of 1.21 W at room temperature.Furthermore,we specifically studied the performance of devices made of materials grown in 30-stage and 40-stage active regions and explored the effect of different active region stages on the device performance.Compared with that of the device in the 30-stage active region,the equivalent output power per unit area of the device in the 40-stage active region is not significantly improved.Instead,the 40-stage device performance drops rapidly as temperature increases,which can be attributed to outstanding heat accumulation and quality deterioration caused by thick epitaxial materials.Therefore,it is necessary to fully consider the balance among factors such as the number of active stages,heat accumulation,and material growth quality when the output power of QCL is improved by increasing the number of active region stages.MOCVD is a technology commonly used in the semiconductor material industry.This research is of great significance for promoting efficient production of QCL materials and expanding applications of QCL technologies in industries.
作者
孙永强
费腾
黎昆
郭凯
张锦川
卓宁
刘俊岐
王利军
刘舒曼
贾志伟
翟慎强
刘峰奇
王占国
Sun Yongqiang;Fei Teng;Li Kun;Guo Kai;Zhang Jinchuan;Zhuo Ning;Liu Junqi;Wang Lijun;Liu Shuman;Jia Zhiwei;Zhai Shenqiang;Liu Fengqi;Wang Zhanguo(Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and OptoElectronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2022年第22期105-110,共6页
Acta Optica Sinica
基金
国家重点研发计划(2020YFB0408401)
北京市科技计划课题(Z201100004020006)。