Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semicond...Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.展开更多
Rare-earth nickelates(RENiO_(3))show widely tunable metal-to-insulator transition(MIT)properties with ignorable variations in lattice constants and small latent heat across the critical temperature(TMIT).Particularly,...Rare-earth nickelates(RENiO_(3))show widely tunable metal-to-insulator transition(MIT)properties with ignorable variations in lattice constants and small latent heat across the critical temperature(TMIT).Particularly,it is worth noting that compared with the more commonly investigated vanadium oxides,the MIT of RENiO_(3)is less abrupt but usually across a wider range of temperatures.This sheds light on their alternative applications as negative temperature coefficient resistance(NTCR)thermistors with high sensitivity compared with the current NTCR thermistors,other than their expected use as critical temperature resistance thermistors.In this work,we demonstrate the NTCR thermistor functionality for using the adjustable MIT of Nd_(x)Sm_(1-x)NiO_(3)within 200–400 K,which displays larger magnitudes of NTCR(e.g.,more than 7%/K)that is unattainable in traditional NTCR thermistor materials.The temperature dependence of resistance(R–T)shows sharp variation during the MIT of Nd_(x)Sm_(1-x)NiO_(3)with no hysteresis via decreasing the Nd content(e.g.,x≤0.8),and such a R–T tendency can be linearized by introducing an optimum parallel resistor.The sensitive range of temperature can be further extended to 210–360 K by combining a series of Nd_(x)Sm_(1-x)NiO_(3)with eight rare-earth co-occupation ratios as an array,with a high magnitude of NTCR(e.g.,7%–14%/K)covering the entire range of temperatures.展开更多
The metal-to-insulator transition(MIT) as usually achieved in 3d-orbital transitional metal(TM) compounds opens up a new paradigm in correlated electronics via triggering abrupt variations in their transportation prop...The metal-to-insulator transition(MIT) as usually achieved in 3d-orbital transitional metal(TM) compounds opens up a new paradigm in correlated electronics via triggering abrupt variations in their transportation properties.Compared to such 3d-orbital TM compounds,the MIT within the platinum group(Pg) element compounds based on the 4d-and 5d-orbital configurations is more complicated,owing to their elevation in the spinorbit coupling and meanwhile weakened intra-atomic Coulomb repulsions.This brings in a new freedom to regulate the balance in their metallic or semiconductive orbital configurations,while their MIT properties can be potentially combined with their spintronic properties to enable new electronic applications.Herein,we review the electronic transport and MIT behaviors within the existing family of Pg-containing compounds,particularly those showing first-order MIT behaviors that can be useful in correlated electronics.It is also hoped that summarizing the presently reported Pg-containing MIT compounds will lead to the discovery of more new material families and/or new mechanisms associated with the Pg-containing compounds showing MIT properties.展开更多
Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a c...Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X= S, Se or Te) monolayer and A1203(0001) substrate. The TaX monolayers provide magnetic states and the A1203(0001) substrate stabilizes the former. Interestingly, the A1203(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices.展开更多
The thermodynamic adhesion between a metal and a ceramic crystal was believed to be the result of theelectron transfer from the metal into the cerainic crystal. From an electronic point of view, such an electrontransf...The thermodynamic adhesion between a metal and a ceramic crystal was believed to be the result of theelectron transfer from the metal into the cerainic crystal. From an electronic point of view, such an electrontransfer at the metal/ceramic interface may be represented by the tunnelling of the metal conduction electron into the ceramic bandgap. Theoretical analysis of the quantum tunnelling process at an intimate rnetal-semicon-ductor contact were performed . and the relationship between adhesion energies and Schottky barrier heights ofvarious metal/semiconductor or insulator interfaces was dcduced .展开更多
In correlated oxides,collaborative manipulation on light intensity,wavelength,pulse duration and polarization has yielded many exotic discoveries,such as phase transitions and novel quantum states.In view of potential...In correlated oxides,collaborative manipulation on light intensity,wavelength,pulse duration and polarization has yielded many exotic discoveries,such as phase transitions and novel quantum states.In view of potential optoelectronic applications,tailoring long-lived static properties by light-induced effects is highly desirable.So far,the polarization state of light has rarely been reported as a control parameter for this purpose.Here,we report polarization-dependent metal-to-insulator transition(MIT)in phaseseparated manganite thin films,introducing a new degree of freedom to control static MIT.Specifically,we observed giant photoinduced resistance jumps with striking features:(1)a single resistance jump occurs upon a linearly polarized light incident with a chosen polarization angle,and a second resistance jump occurs when the polarization angle changes;(2)the amplitude of the second resistance jump depends sensitively on the actual change of the polarization angles.Linear transmittance measurements reveal that the origin of the above phenomena is closely related to the coexistence of anisotropic micro-domains.Our results represent a first step to utilize light polarization as an active knob to manipulate static phase transitions,pointing towards new pathways for nonvolatile optoelectronic devices and sensors.展开更多
The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics app...The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications,e.g.ocean electric field sensor,bio-sensor,and neuron synapse logical devices.Nevertheless,these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO_(3)with flexibly adjustable rare-earth compositions and electronic structures.Herein,we demonstrate a metal-organic decompositions(MOD)approach that can effectively grow metastable RENiO_(3)covering a large variety of the rare-earth composition without introducing any vacuum process.Unlike the previous chemical growths for RENiO_(3)relying on strict interfacial coherency that limit the film thickness,the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions.Further indicated by positron annihilation spectroscopy,the RENiO_(3)grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers,as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis.This effectively enlarges the magnitude in the resistance regulations in particular for RENiO_(3)with lighter RE,shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.展开更多
Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, ...Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, we examine the ground state of the three-band Hubbard model (d-p model) that explicitly includes oxygen p orbitals. We consider the half-filled case with the large on-site Coulomb repulsion Ud by using the variational Monte Carlo method. The ground state is insulating when Ud is large at half-filling. The ground state undergoes a transition from a metal to a Mott insulator when the level difference εp-εd is increased.展开更多
Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam(PBF-EB)tech-nology.In this st...Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam(PBF-EB)tech-nology.In this study,mechanical stimulation was suggested to suppress smoke of gas-atomized(GA)Ti-48Al-2Cr-2Nb powder using Al_(2)O_(3) and WC ball milling.The deformation mechanism of the GA powder depending on the ball milling media was discussed based on the developed particle morphology distribu-tion map and contact mechanics simulation.It was revealed that the rapid decrement of flowability and packing density after WC ball milling owing to the formation of angular fragments by the brittle fracture.The variation of surface and electrical properties by mechanical stimulation was investigated via XPS,TEM,and Impedance analysis.The electrical resistivity of the ball-milled powders gradually decreased with increasing milling duration,despite the increased oxide film thickness,and the capacitive response disappeared in Al-60 and WC-30 via metal-insulator transition.This could be due to the accumulation of strain and defects on the oxide film via mechanical stimulation.The smoke mechanism of ball-milled powders was discussed based on the percolation theory.In the smoke experiment,smoke was more suppressed for WC-10 and WC-20 than that for Al-40 and Al-50,respectively,despite the longer charge dissipation time.This could be due to the high probability of contact with conductive particles.For the Al-60 and WC-30 powders,smoke was further restricted by the formation of a percolation cluster with metal-like electrical conductivity.We believe that this study will contribute to a better understanding of the smoke mechanism and process optimization of the PBF-EB.展开更多
We report a straightforward tool to investigate insulator-metal transition in RCoO_(3)(R=Pr,and Nd)nanoparticles prepared by a sol-gel technique.Thermogravimetric analysis(TGA)of the as-prepared gel is performed to ge...We report a straightforward tool to investigate insulator-metal transition in RCoO_(3)(R=Pr,and Nd)nanoparticles prepared by a sol-gel technique.Thermogravimetric analysis(TGA)of the as-prepared gel is performed to get the lowest possible calcination temperature of RCoO_(3)nanoparticles.The Rietveld refinement of the powder X-ray diffraction(XRD)patterns for both samples shows that the samples crystallize in the orthorhombic(Pnma)phase at room temperature.The particle size of the sample is determined by scanning electron microscopy.Ac conductivity of the materials is analyzed in the temperature range from 303 K to 673 K and in the frequency range from 42 Hz to 1.1 MHz.The insulator-to-metal transition of PrCoO_(3)and NdCoO_(3)is analyzed by ac impedance spectroscopy.DC resistivity measurement is also done to cross check the insulator-metal transition in RCoO_(3)system.展开更多
Ruddlesden-Popper iridate Sr_(3)Ir_(2)O_(7)is a spin-orbit coupled Mott insulator.Hole doped Sr_(3)Ir_(2)O_(7)provides an ideal platform to study the exotic quantum phenomena that occur near the metal-insulator transi...Ruddlesden-Popper iridate Sr_(3)Ir_(2)O_(7)is a spin-orbit coupled Mott insulator.Hole doped Sr_(3)Ir_(2)O_(7)provides an ideal platform to study the exotic quantum phenomena that occur near the metal-insulator transition(MIT)region.Rh substitution of Ir is an effective method to induce hole doping into Sr_(3)Ir_(2)O_(7).However,the highest doping level reported in Sr_(3)(Ir_(1-x)Rh_(x))_(2)O_(7)single crystals was only around 3%,which is far from the MIT region.In this paper,we report the successful growth of single crystals of Sr3(Ir_(1-x)Rh_(x))_(2)O_(7)with a doping level of~9%.The samples have been fully characterized,demonstrating the high quality of the single crystals.Transport measurements have been carried out,confirming the tendency of MIT in these samples.The electronic structure has also been examined by angle-resolved photoemission spectroscopy(ARPES)measurements.Our results establish a platform to investigate the heavily hole doped Sr_(3)Ir_(2)O_(7) compound,which also provide new insights into the MIT with hole doping in this material system.展开更多
We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling betwee...We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.展开更多
The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state ...The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state reaction technique. Resistance measurements showed a suppression of Tc with increasing of Pr- and Gd-contents in addition to a normal-state metal-to-insulator transition. Moreover, a superconductor-to-insulator transition has been observed at ambient pressure for temperatures less than 50 K for Pr with x = 0.3 and for Gd with x > 0.3. The overall complex behaviours of the resistivity data have been preliminary explained in terms of localization of charge carriers, structural disorders, and magnetic ordering of magnetic moments.展开更多
It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fer...It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom---charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.展开更多
The influence of aluminum doping at Mn-site in nanograin compound La0.8Sr0.2MnO3 was investigated based on X-ray diffraction, scanning electron microscope and resistivity measurement, in the light of structure and tra...The influence of aluminum doping at Mn-site in nanograin compound La0.8Sr0.2MnO3 was investigated based on X-ray diffraction, scanning electron microscope and resistivity measurement, in the light of structure and transport properties. The results showed that Al doping was favorable to the globurizing of powders and grain size uniformity, however, depressed the particles growth. The resistivity of system increased rapidly and the metal-insulator transition temperature (TIM) and room temperature magnetoresistance decreased as the aluminum concentration increased. In the T>TIM region, the current carriers were moving in variable range transition mode. The resistivity of La0.8Sr0.2Mn1-xAlxO3 for x=0.05 and 0.1 satisfied metal model in the T<TIM region. The characteristics of the transport behavior for aluminum doping were analyzed in terms of destroying the double exchange channel of Mn3+-O-Mn4+, distortion of the cell lattice and change of powder particles size and shape.展开更多
基金financially supported by the National Key Research and Development Program of China (No.2021YFA0718900)the National Natural Science Foundation of China (No.62074014)the Xiaomi Scholar project。
文摘Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.
基金the National Key Research and Development Program of China(No.2021YFA0718900)the National Natural Science Foundation of China(No.62074014)。
文摘Rare-earth nickelates(RENiO_(3))show widely tunable metal-to-insulator transition(MIT)properties with ignorable variations in lattice constants and small latent heat across the critical temperature(TMIT).Particularly,it is worth noting that compared with the more commonly investigated vanadium oxides,the MIT of RENiO_(3)is less abrupt but usually across a wider range of temperatures.This sheds light on their alternative applications as negative temperature coefficient resistance(NTCR)thermistors with high sensitivity compared with the current NTCR thermistors,other than their expected use as critical temperature resistance thermistors.In this work,we demonstrate the NTCR thermistor functionality for using the adjustable MIT of Nd_(x)Sm_(1-x)NiO_(3)within 200–400 K,which displays larger magnitudes of NTCR(e.g.,more than 7%/K)that is unattainable in traditional NTCR thermistor materials.The temperature dependence of resistance(R–T)shows sharp variation during the MIT of Nd_(x)Sm_(1-x)NiO_(3)with no hysteresis via decreasing the Nd content(e.g.,x≤0.8),and such a R–T tendency can be linearized by introducing an optimum parallel resistor.The sensitive range of temperature can be further extended to 210–360 K by combining a series of Nd_(x)Sm_(1-x)NiO_(3)with eight rare-earth co-occupation ratios as an array,with a high magnitude of NTCR(e.g.,7%–14%/K)covering the entire range of temperatures.
基金financially supported by the National Key Research and Development Program of China (No.2021YFA0718900)the National Natural Science Foundation of China (Nos.62074014 and 52073090)the support by Xiao Mi scholar project。
文摘The metal-to-insulator transition(MIT) as usually achieved in 3d-orbital transitional metal(TM) compounds opens up a new paradigm in correlated electronics via triggering abrupt variations in their transportation properties.Compared to such 3d-orbital TM compounds,the MIT within the platinum group(Pg) element compounds based on the 4d-and 5d-orbital configurations is more complicated,owing to their elevation in the spinorbit coupling and meanwhile weakened intra-atomic Coulomb repulsions.This brings in a new freedom to regulate the balance in their metallic or semiconductive orbital configurations,while their MIT properties can be potentially combined with their spintronic properties to enable new electronic applications.Herein,we review the electronic transport and MIT behaviors within the existing family of Pg-containing compounds,particularly those showing first-order MIT behaviors that can be useful in correlated electronics.It is also hoped that summarizing the presently reported Pg-containing MIT compounds will lead to the discovery of more new material families and/or new mechanisms associated with the Pg-containing compounds showing MIT properties.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574223)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150303)the Jiangsu Specially-Appointed Professor Program of Jiangsu Province,China
文摘Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spin- tronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X= S, Se or Te) monolayer and A1203(0001) substrate. The TaX monolayers provide magnetic states and the A1203(0001) substrate stabilizes the former. Interestingly, the A1203(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices.
文摘The thermodynamic adhesion between a metal and a ceramic crystal was believed to be the result of theelectron transfer from the metal into the cerainic crystal. From an electronic point of view, such an electrontransfer at the metal/ceramic interface may be represented by the tunnelling of the metal conduction electron into the ceramic bandgap. Theoretical analysis of the quantum tunnelling process at an intimate rnetal-semicon-ductor contact were performed . and the relationship between adhesion energies and Schottky barrier heights ofvarious metal/semiconductor or insulator interfaces was dcduced .
基金supported by the National Key Research and Development Program of China(2022YFA1403300 and 2020YFA0309100)the National Natural Science Foundation of China(11991060,12074075,12074073,12074071,12074080,and 12274088)+3 种基金the Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)the Shanghai Municipal Natural Science Foundation(20501130600,22ZR1408100,22ZR1407400,and 23ZR1407200)support from the National Key Research and Development Program of China(2021YFA1400503 and 2021YFA1400202)the National Natural Science Foundation of China(12125403,11874123,and 12221004).
文摘In correlated oxides,collaborative manipulation on light intensity,wavelength,pulse duration and polarization has yielded many exotic discoveries,such as phase transitions and novel quantum states.In view of potential optoelectronic applications,tailoring long-lived static properties by light-induced effects is highly desirable.So far,the polarization state of light has rarely been reported as a control parameter for this purpose.Here,we report polarization-dependent metal-to-insulator transition(MIT)in phaseseparated manganite thin films,introducing a new degree of freedom to control static MIT.Specifically,we observed giant photoinduced resistance jumps with striking features:(1)a single resistance jump occurs upon a linearly polarized light incident with a chosen polarization angle,and a second resistance jump occurs when the polarization angle changes;(2)the amplitude of the second resistance jump depends sensitively on the actual change of the polarization angles.Linear transmittance measurements reveal that the origin of the above phenomena is closely related to the coexistence of anisotropic micro-domains.Our results represent a first step to utilize light polarization as an active knob to manipulate static phase transitions,pointing towards new pathways for nonvolatile optoelectronic devices and sensors.
基金financially supported by the National Key Research and Development Program of China(No.2021YFA0718900)National Natural Science Foundation of China(Nos.62074014,52073090,and 52103284)。
文摘The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications,e.g.ocean electric field sensor,bio-sensor,and neuron synapse logical devices.Nevertheless,these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO_(3)with flexibly adjustable rare-earth compositions and electronic structures.Herein,we demonstrate a metal-organic decompositions(MOD)approach that can effectively grow metastable RENiO_(3)covering a large variety of the rare-earth composition without introducing any vacuum process.Unlike the previous chemical growths for RENiO_(3)relying on strict interfacial coherency that limit the film thickness,the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions.Further indicated by positron annihilation spectroscopy,the RENiO_(3)grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers,as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis.This effectively enlarges the magnitude in the resistance regulations in particular for RENiO_(3)with lighter RE,shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.
文摘Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, we examine the ground state of the three-band Hubbard model (d-p model) that explicitly includes oxygen p orbitals. We consider the half-filled case with the large on-site Coulomb repulsion Ud by using the variational Monte Carlo method. The ground state is insulating when Ud is large at half-filling. The ground state undergoes a transition from a metal to a Mott insulator when the level difference εp-εd is increased.
基金This work was partially supported by JSPS KAKENHI(grant numbers 18H03834 and 21k14432)This research was also supported by“Materials Integration for Revolutionary Design System of Structure Materials”of the Cross-Ministerial Strategic Innovation Promotion Program(SIP)of Japan Science and Technology(JST).This work was also based on the results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization(NEDO)(JPNP14014).This work was partly supported by the Technology Research Association for Future Additive Manufacturing(TRAFAM).This work is also based on the results obtained from a project(JPNP19007)commissioned by the New Energy and Industrial Technology Development Organization(NEDO).
文摘Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam(PBF-EB)tech-nology.In this study,mechanical stimulation was suggested to suppress smoke of gas-atomized(GA)Ti-48Al-2Cr-2Nb powder using Al_(2)O_(3) and WC ball milling.The deformation mechanism of the GA powder depending on the ball milling media was discussed based on the developed particle morphology distribu-tion map and contact mechanics simulation.It was revealed that the rapid decrement of flowability and packing density after WC ball milling owing to the formation of angular fragments by the brittle fracture.The variation of surface and electrical properties by mechanical stimulation was investigated via XPS,TEM,and Impedance analysis.The electrical resistivity of the ball-milled powders gradually decreased with increasing milling duration,despite the increased oxide film thickness,and the capacitive response disappeared in Al-60 and WC-30 via metal-insulator transition.This could be due to the accumulation of strain and defects on the oxide film via mechanical stimulation.The smoke mechanism of ball-milled powders was discussed based on the percolation theory.In the smoke experiment,smoke was more suppressed for WC-10 and WC-20 than that for Al-40 and Al-50,respectively,despite the longer charge dissipation time.This could be due to the high probability of contact with conductive particles.For the Al-60 and WC-30 powders,smoke was further restricted by the formation of a percolation cluster with metal-like electrical conductivity.We believe that this study will contribute to a better understanding of the smoke mechanism and process optimization of the PBF-EB.
基金support in the form of a Senior Research Associateship(Scientists’Pool Scheme)under Grant No.13(9112-A)/2020-Pool.AD thanks CSIRNew Delhi for providing financial support in the form of SRA under Grant No.13(9099-A)/2020-Pool.
文摘We report a straightforward tool to investigate insulator-metal transition in RCoO_(3)(R=Pr,and Nd)nanoparticles prepared by a sol-gel technique.Thermogravimetric analysis(TGA)of the as-prepared gel is performed to get the lowest possible calcination temperature of RCoO_(3)nanoparticles.The Rietveld refinement of the powder X-ray diffraction(XRD)patterns for both samples shows that the samples crystallize in the orthorhombic(Pnma)phase at room temperature.The particle size of the sample is determined by scanning electron microscopy.Ac conductivity of the materials is analyzed in the temperature range from 303 K to 673 K and in the frequency range from 42 Hz to 1.1 MHz.The insulator-to-metal transition of PrCoO_(3)and NdCoO_(3)is analyzed by ac impedance spectroscopy.DC resistivity measurement is also done to cross check the insulator-metal transition in RCoO_(3)system.
基金supported by the USTC start-up fundthe National Natural Science Foundation of China(Grant Nos.12074358 and 12004363)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.WK3510000008 and WK2030000035)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302802)supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences under Contract No.DEAC02-76SF00515。
文摘Ruddlesden-Popper iridate Sr_(3)Ir_(2)O_(7)is a spin-orbit coupled Mott insulator.Hole doped Sr_(3)Ir_(2)O_(7)provides an ideal platform to study the exotic quantum phenomena that occur near the metal-insulator transition(MIT)region.Rh substitution of Ir is an effective method to induce hole doping into Sr_(3)Ir_(2)O_(7).However,the highest doping level reported in Sr_(3)(Ir_(1-x)Rh_(x))_(2)O_(7)single crystals was only around 3%,which is far from the MIT region.In this paper,we report the successful growth of single crystals of Sr3(Ir_(1-x)Rh_(x))_(2)O_(7)with a doping level of~9%.The samples have been fully characterized,demonstrating the high quality of the single crystals.Transport measurements have been carried out,confirming the tendency of MIT in these samples.The electronic structure has also been examined by angle-resolved photoemission spectroscopy(ARPES)measurements.Our results establish a platform to investigate the heavily hole doped Sr_(3)Ir_(2)O_(7) compound,which also provide new insights into the MIT with hole doping in this material system.
基金the National NaturalScience Foundation of China (Grant No. 59801006) the Key Teacher Supporting Project (Grant No. G00032) +1 种基金and the Starting Foundation of Returned Researchers of the National Education Committee and Tianjin Youth Science Foundatio
文摘We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.
文摘The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state reaction technique. Resistance measurements showed a suppression of Tc with increasing of Pr- and Gd-contents in addition to a normal-state metal-to-insulator transition. Moreover, a superconductor-to-insulator transition has been observed at ambient pressure for temperatures less than 50 K for Pr with x = 0.3 and for Gd with x > 0.3. The overall complex behaviours of the resistivity data have been preliminary explained in terms of localization of charge carriers, structural disorders, and magnetic ordering of magnetic moments.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB921801)the National Natural Science Foundation of China(Grant Nos.91121002and11274071)+1 种基金US DOE Office of Basic Energy Sciences,Scientific User Facilities Division,and the US DOE grant DE-SC0002136the US DOE Office of Basic Energy Sciences,Materials Sciences and Engineering Division,through the Oak Ridge National Laboratory
文摘It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom---charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.
基金Project supported bythe Programfor New Century Excellent Talents in University
文摘The influence of aluminum doping at Mn-site in nanograin compound La0.8Sr0.2MnO3 was investigated based on X-ray diffraction, scanning electron microscope and resistivity measurement, in the light of structure and transport properties. The results showed that Al doping was favorable to the globurizing of powders and grain size uniformity, however, depressed the particles growth. The resistivity of system increased rapidly and the metal-insulator transition temperature (TIM) and room temperature magnetoresistance decreased as the aluminum concentration increased. In the T>TIM region, the current carriers were moving in variable range transition mode. The resistivity of La0.8Sr0.2Mn1-xAlxO3 for x=0.05 and 0.1 satisfied metal model in the T<TIM region. The characteristics of the transport behavior for aluminum doping were analyzed in terms of destroying the double exchange channel of Mn3+-O-Mn4+, distortion of the cell lattice and change of powder particles size and shape.