期刊文献+

Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions

下载PDF
导出
摘要 Metal-to-insulator transitions (MITs),which are achieved in 3d-band correlated transitional metal oxides,trigger abrupt variations in electrical,optical,and/or magnetic properties beyond those of conventional semiconductors.Among such material families,iron(Fe:3d^(6)4s^(2))-containing oxides pique interest owing to their widely tunable MIT properties,which are associated with the various valence states of Fe.Their potential electronic applications also show promise,given the large abundance of Fe on Earth.Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe_(2)O_(4)(Fe^(2.5+)),ReBaFe_(2)O_(5)(Fe^(2.5+)),Fe_(3)O_(4)(Fe^(2.67+)),Re_(1/3)Sr_(2/3)FeO_(3)(Fe^(3.67+)),Re Cu_(3)Fe_(4)O_(12)(Fe^(3.75+)),and Ca_(1-x)Sr_(x)FeO_(3)(Fe^(4+))(where Re represents rare-earth elements).The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe.Herein,we review the material family of Fe-containing MIT oxides,their MIT functionalities,and their respective mechanisms.From the perspective of potentially correlated electronic applications,the tunability of the TMITand its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality.In particular,we highlight the abrupt MIT and wide tunability of TMITof Fe-containing quadruple perovskites,such as Re Cu3Fe4O12.However,their effective material synthesis still needs to be further explored to cater to potential applications.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期48-59,共12页 矿物冶金与材料学报(英文版)
基金 financially supported by the National Key Research and Development Program of China (No.2021YFA0718900) the National Natural Science Foundation of China (No.62074014) the Xiaomi Scholar project。
  • 相关文献

参考文献2

二级参考文献105

  • 1Gschneidner Jr K A and Pecharsky V K 2000 Mater. Sci. Eng. A 287 301. 被引量:1
  • 2Gschneidner Jr K A and Pecharsky V K 1999 J. Appl. Phys. 85 5365. 被引量:1
  • 3Pecharsky V K, Gschneidner Jr K A and Tsokol A O 2005 Rep. Prog. Phys. 68 1479. 被引量:1
  • 4Debye P 1926 Ann. Physik. 386 1154. 被引量:1
  • 5Giauque W F 1927 J. Am. Chem. Soc. 49 1870. 被引量:1
  • 6Giauque W F and MacDougall D P 1933 Phys. Rev. 43 768. 被引量:1
  • 7Barclay J A, Jaeger S R and Prenger F C 1990 Adv. Cryog. Eng. B 35 1097. 被引量:1
  • 8Prenger F C, Hill D D, Trueblood J, Servais T, Laatsch J and Barcaly J A 1990Adv. Cryog. Eng. B35 1105. 被引量:1
  • 9Hashimoto T, Numasawa T, Shino M and Okada T 1981 Cryogenics 21 647. 被引量:1
  • 10Brown G V 1976 J. Appl. Phys. 47 3673. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部