Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there ...Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there are still some challenges in fabricating metal films in template-free and normal temperature environment.In this work,we report a flexible and rapid laser metal transfer(LMT)technique for fabricating the various metal films(Cu,Ni,Sn,Al,Fe,and Ag)with different patterns without templates on arbitrary substrates(glass,polyimide(PI)films,and aluminum nitride(AlN)ceramic).Especially,the obtained transparent conductive glass displays high transmittance(more than 90%)and adjustable resistances(≈5Ω).According to the Joule effect,the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280℃ at 2 V in a short time(≈60 s)and remains stable at 120℃ over 12 h.At last,the multifunctional glass with Cu patterns also shows excellent bactericidal activity(≈95%).This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices.展开更多
The fascinating chemical structure and broad application prospect of Keggin-type polyoxometalates(POMs)have attracted many chemists to explore and discover continuously.Unlike the traditional Keggin,larger metal atomi...The fascinating chemical structure and broad application prospect of Keggin-type polyoxometalates(POMs)have attracted many chemists to explore and discover continuously.Unlike the traditional Keggin,larger metal atomic radius,higher metal coordinated numbers,lower metal valence states and other features allow the group IVB metal-based Keggin(IVB-Keggin)more space and unknown in terms of structure and performance.Herein,density functional theory(DFT)calculations were performed to explore the influences including cores,shells,caps,and terminal ligands,et al.on IVB-Keggin,and analyze the possibility of novel structure synthesis.From the perspective of multi-layer onion-like clusters,molecular energy level,host-guest interaction energy,surface charge and covalent bond polarity can be further adjusted to achieve the oriented design of functional IVB-Keggin.These insights are expected to provide theoretical support for experimental synthesis,opening a new perspective to understand the growth of Keggin.展开更多
基金supported by the Taishan Scholar Project of Shandong Province(No.tsqn201812083)the Natural Science Foundation of Shandong Province(Nos.ZR2021JQ15,ZR2020QE071,ZR2020LLZ006,and ZR2020MH191)+1 种基金the Innovative Team Project of Jinan(No.2021GXRC019)the National Natural Science Foundation of China(Nos.52022037,52102171,and 62174068).
文摘Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there are still some challenges in fabricating metal films in template-free and normal temperature environment.In this work,we report a flexible and rapid laser metal transfer(LMT)technique for fabricating the various metal films(Cu,Ni,Sn,Al,Fe,and Ag)with different patterns without templates on arbitrary substrates(glass,polyimide(PI)films,and aluminum nitride(AlN)ceramic).Especially,the obtained transparent conductive glass displays high transmittance(more than 90%)and adjustable resistances(≈5Ω).According to the Joule effect,the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280℃ at 2 V in a short time(≈60 s)and remains stable at 120℃ over 12 h.At last,the multifunctional glass with Cu patterns also shows excellent bactericidal activity(≈95%).This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.22225109,22071109,92061101,22173016 and 22301084)the China Postdoctoral Science Foundation(No.2023M741232)。
文摘The fascinating chemical structure and broad application prospect of Keggin-type polyoxometalates(POMs)have attracted many chemists to explore and discover continuously.Unlike the traditional Keggin,larger metal atomic radius,higher metal coordinated numbers,lower metal valence states and other features allow the group IVB metal-based Keggin(IVB-Keggin)more space and unknown in terms of structure and performance.Herein,density functional theory(DFT)calculations were performed to explore the influences including cores,shells,caps,and terminal ligands,et al.on IVB-Keggin,and analyze the possibility of novel structure synthesis.From the perspective of multi-layer onion-like clusters,molecular energy level,host-guest interaction energy,surface charge and covalent bond polarity can be further adjusted to achieve the oriented design of functional IVB-Keggin.These insights are expected to provide theoretical support for experimental synthesis,opening a new perspective to understand the growth of Keggin.