The heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province was investigated. 97 feed and manure samples were sampled from 31 farming plants in 10 major cities of ...The heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province was investigated. 97 feed and manure samples were sampled from 31 farming plants in 10 major cities of Jiangsu. 14 metals, including Zn, Cu, Pb, Cd, Cr, Ni, Mo, Mn, Ba, Co, Sr, Ti, As and Hg, were analyzed after samples acid digestion. The results showed that the most feed samples contained high concentration of metals exceeding National Hygienical Standard for Feeds. Meanwhile, it was found that Cu, Zn, Pb, Cd and Cr concentrations in animal manures were also high, for example, Cu concentration in a manure sample reached to as much as 1726 3 mg/kg. Heavy metals loading quantities in soil per year were then calculated when metals contaminated organic fertilizers were applied, and its effects on soil environmental quality were further evaluated.展开更多
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth,productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges,transmit th...Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth,productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges,transmit the stress signals within cells as well as between cells and tissues,and make appropriate adjustments in their growth and development in order to survive and reproduce.In recent years,significant progress has been made on many fronts of the stress signaling research,particularly in understanding the downstream signaling events that culminate at the activation of stress-and nutrient limitation-responsive genes,cellular ion homeostasis,and growth adjustment.However,the revelation of the early events of stress signaling,particularly the identification of primary stress sensors,still lags behind.In this review,we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.展开更多
The development of efficient and cost-effective catalysts to catalyze a wide variety of electrochemical reactions is key to realize the large-scale applicati on of ren ewable and clean en ergy tech no logies.Owing to ...The development of efficient and cost-effective catalysts to catalyze a wide variety of electrochemical reactions is key to realize the large-scale applicati on of ren ewable and clean en ergy tech no logies.Owing to the maximum atom-utilization efficie ncy and unique electronic and geometric structures,single atom catalysts(SACs)have exhibited superior performance in various catalytic systems.Recently,assembled from the function alized orga nic lin kers and metal no des,metal-organic frameworks(MOFs)with ultrafi ne porosity have received treme ndous attention as precursors or self-sacrificing templates for preparing porous SACs.Here,the recent advances toward the synthesis strategies for using MOF precursors/templates to con struct SACs are systematically summarized with special emphasis on the types of central metal sites.The electrochemical applications of these recently emerged MOF-derived SACs for various energy-conversion processes,such as oxygen reduction/evolution reaction(ORR/OER),hydrogen evolution reaction(HER),and CO2 reduction reaction(CO2RR),are also discussed and reviewed.Fin ally,the curre nt challe nges and prospects regardi ng the developme nt of MOF-derived SACs are proposed.展开更多
Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmenta...Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to de- velop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009-2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continu- ous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety.展开更多
The concentrations of eight heavy metals (Cu, Zn, Pb, Cd, Cr, Ni, Hg, and As) in the intertidal surface sediments from Quanzhou Bay were determined to evaluate their levels and spatial distribution due to urbanizati...The concentrations of eight heavy metals (Cu, Zn, Pb, Cd, Cr, Ni, Hg, and As) in the intertidal surface sediments from Quanzhou Bay were determined to evaluate their levels and spatial distribution due to urbanization and economic development of Quanzhou region, southeast China. The ranges of the measured concentrations in the sediments are as follows: 24.8-119.7 mg/kg for Cu, 105.5-241.9 mg/kg for Zn, 34.3-100. 9 mg/kg for Pb, 0.28-0. 89 mg/kg for Cd, 51.1-121.7 mg/kg for Cr, 16.1-45.7 mg/kg for Ni, 0.17-0.74 mg/kg for Hg, and 17.7-30.2 mg/kg for As. The overall average concentrations of above metals exceed the primary standard criteria but meet the secondary standard criteria of the Chinese National Standard of Marine Sediment Quality. Several contents of Cu and Hg exceed the secondary standard criteria at some stations. The results of geoaccumulation index (Igeo) show that Cd causes strong pollution in most of the study area. There are no significant correlations among most of these heavy metals, indicating they have different anthropogenic and natural sources. Some locations present severe pollution by heavy metals depending on the sources, of which sewage outlets, aquatic breeding, and commercial ports are the main sources of contaminants to the area.展开更多
Size distributions of 29 elements in aerosols collected at urban,rural and curbside sites in Beijing were studied.High levels of Mn,Ni,As,Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in B...Size distributions of 29 elements in aerosols collected at urban,rural and curbside sites in Beijing were studied.High levels of Mn,Ni,As,Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing.Principal component analysis (PCA) indicates 4 sources of combustion emission,crust related sources,traffic related sources and volatile species from coal combustion.The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs).Group 1 elements are crust related and mainly found within coarse mode including Al,Mg,Ca,Sc,Ti,Fe,Sr,Zr and Ba;Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S,As,Se,Ag,Cd,Tl and Pb;Group 3 elements are multi-source related and show multi-mode distribution including Be,Na,K,Cr,Mn,Co,Ni,Cu,Zn,Ga,Mo,Sn and Sb.The EFs of Be,S,Cr,Co,Ni,Cu,Ga,Se,Mo,Ag,Cd,Sb,Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter.The abundance of Cu and Sb in coarse mode is about 2–6 times higher at curbside site than at urban site indicating their traffic sources.Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline,as the EFs of Pb are comparable at both urban and curbside sites,and about two times higher in winter than that in summer.展开更多
Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead(Pb) and cadmium(Cd). As the core target of such pollutants, a large...Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead(Pb) and cadmium(Cd). As the core target of such pollutants, a large number of soils are nowadays contaminated over widespread areas, posing a great threat to public health worldwide. Unlike organic pollutants, Pb and Cd do not undergo chemical or microbial breakdown and stay likely in site for longer duration after their release. Immobilization is an in-situ remediation technique that uses cost-effective soil amendments to reduce Pb and Cd availability in the contaminated soils. The Pb and Cd contamination in the soil environment is reviewed with focus on source enrichment, speciation and associated health risks, and immobilization options using various soil amendments. Commonly applied and emerging cost-effective soil amendments for Pb and Cd immobilization include phosphate compounds, liming, animal manure, biosolids, metal oxides, and biochar. These immobilizing agents could reduce the transfer of metal pollutants or residues to food web(plant uptake and leaching to subsurface water) and their long-term sustainability in heavy metal fixation needs further assessment.展开更多
文摘The heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province was investigated. 97 feed and manure samples were sampled from 31 farming plants in 10 major cities of Jiangsu. 14 metals, including Zn, Cu, Pb, Cd, Cr, Ni, Mo, Mn, Ba, Co, Sr, Ti, As and Hg, were analyzed after samples acid digestion. The results showed that the most feed samples contained high concentration of metals exceeding National Hygienical Standard for Feeds. Meanwhile, it was found that Cu, Zn, Pb, Cd and Cr concentrations in animal manures were also high, for example, Cu concentration in a manure sample reached to as much as 1726 3 mg/kg. Heavy metals loading quantities in soil per year were then calculated when metals contaminated organic fertilizers were applied, and its effects on soil environmental quality were further evaluated.
文摘Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth,productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges,transmit the stress signals within cells as well as between cells and tissues,and make appropriate adjustments in their growth and development in order to survive and reproduce.In recent years,significant progress has been made on many fronts of the stress signaling research,particularly in understanding the downstream signaling events that culminate at the activation of stress-and nutrient limitation-responsive genes,cellular ion homeostasis,and growth adjustment.However,the revelation of the early events of stress signaling,particularly the identification of primary stress sensors,still lags behind.In this review,we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
基金This work was supported by the National Key R&D Program of China(No.2016YFA0202801)the National Natural Science Foundation of China(Nos.21671117,21871159,21890383,and 21676018)and the China Postdoctoral Science Foundation(No.2017M610864).
文摘The development of efficient and cost-effective catalysts to catalyze a wide variety of electrochemical reactions is key to realize the large-scale applicati on of ren ewable and clean en ergy tech no logies.Owing to the maximum atom-utilization efficie ncy and unique electronic and geometric structures,single atom catalysts(SACs)have exhibited superior performance in various catalytic systems.Recently,assembled from the function alized orga nic lin kers and metal no des,metal-organic frameworks(MOFs)with ultrafi ne porosity have received treme ndous attention as precursors or self-sacrificing templates for preparing porous SACs.Here,the recent advances toward the synthesis strategies for using MOF precursors/templates to con struct SACs are systematically summarized with special emphasis on the types of central metal sites.The electrochemical applications of these recently emerged MOF-derived SACs for various energy-conversion processes,such as oxygen reduction/evolution reaction(ORR/OER),hydrogen evolution reaction(HER),and CO2 reduction reaction(CO2RR),are also discussed and reviewed.Fin ally,the curre nt challe nges and prospects regardi ng the developme nt of MOF-derived SACs are proposed.
基金financially supported by grants of the Key Projects in the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD14B00)the Guangdong Provincial Science and Technology Plan Key Project,China(2012A020100003,2015A050502043)
文摘Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to de- velop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009-2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continu- ous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety.
基金supported by the National Natural Science Foundation of China(No.40673061)the Research Program of Science and Technology of Quanzhou City Government(No.2007Z43)the Foundation of Key Laboratory of Nuclear Resources and Environment(East China Institute of Technology),Ministry of Education(No.070714).
文摘The concentrations of eight heavy metals (Cu, Zn, Pb, Cd, Cr, Ni, Hg, and As) in the intertidal surface sediments from Quanzhou Bay were determined to evaluate their levels and spatial distribution due to urbanization and economic development of Quanzhou region, southeast China. The ranges of the measured concentrations in the sediments are as follows: 24.8-119.7 mg/kg for Cu, 105.5-241.9 mg/kg for Zn, 34.3-100. 9 mg/kg for Pb, 0.28-0. 89 mg/kg for Cd, 51.1-121.7 mg/kg for Cr, 16.1-45.7 mg/kg for Ni, 0.17-0.74 mg/kg for Hg, and 17.7-30.2 mg/kg for As. The overall average concentrations of above metals exceed the primary standard criteria but meet the secondary standard criteria of the Chinese National Standard of Marine Sediment Quality. Several contents of Cu and Hg exceed the secondary standard criteria at some stations. The results of geoaccumulation index (Igeo) show that Cd causes strong pollution in most of the study area. There are no significant correlations among most of these heavy metals, indicating they have different anthropogenic and natural sources. Some locations present severe pollution by heavy metals depending on the sources, of which sewage outlets, aquatic breeding, and commercial ports are the main sources of contaminants to the area.
基金supported by the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 11K03ESPCT)the National Department Public Benefit Research Foundation (Ministry of Environmental Protection of the People’s Republic of China) (No. 201009001,201109002)
文摘Size distributions of 29 elements in aerosols collected at urban,rural and curbside sites in Beijing were studied.High levels of Mn,Ni,As,Cd and Pb indicate the pollution of toxic heavy metals cannot be neglected in Beijing.Principal component analysis (PCA) indicates 4 sources of combustion emission,crust related sources,traffic related sources and volatile species from coal combustion.The elements can be roughly divided into 3 groups by size distribution and enrichment factors method (EFs).Group 1 elements are crust related and mainly found within coarse mode including Al,Mg,Ca,Sc,Ti,Fe,Sr,Zr and Ba;Group 2 elements are fossil fuel related and mostly concentrated in accumulation mode including S,As,Se,Ag,Cd,Tl and Pb;Group 3 elements are multi-source related and show multi-mode distribution including Be,Na,K,Cr,Mn,Co,Ni,Cu,Zn,Ga,Mo,Sn and Sb.The EFs of Be,S,Cr,Co,Ni,Cu,Ga,Se,Mo,Ag,Cd,Sb,Tl and Pb show higher values in winter than in summer indicating sources of coal combustion for heating in winter.The abundance of Cu and Sb in coarse mode is about 2–6 times higher at curbside site than at urban site indicating their traffic sources.Coal burning may be the major source of Pb in Beijing since the phase out of leaded gasoline,as the EFs of Pb are comparable at both urban and curbside sites,and about two times higher in winter than that in summer.
文摘Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead(Pb) and cadmium(Cd). As the core target of such pollutants, a large number of soils are nowadays contaminated over widespread areas, posing a great threat to public health worldwide. Unlike organic pollutants, Pb and Cd do not undergo chemical or microbial breakdown and stay likely in site for longer duration after their release. Immobilization is an in-situ remediation technique that uses cost-effective soil amendments to reduce Pb and Cd availability in the contaminated soils. The Pb and Cd contamination in the soil environment is reviewed with focus on source enrichment, speciation and associated health risks, and immobilization options using various soil amendments. Commonly applied and emerging cost-effective soil amendments for Pb and Cd immobilization include phosphate compounds, liming, animal manure, biosolids, metal oxides, and biochar. These immobilizing agents could reduce the transfer of metal pollutants or residues to food web(plant uptake and leaching to subsurface water) and their long-term sustainability in heavy metal fixation needs further assessment.